深度学习04——逻辑回归及分类评估

目录

引言

逻辑回归(Logistics Regression)

模型选择

损失函数

梯度下降

逻辑回归的向量化

评估分类模型的有效性

基本概念

ROC 和曲线下面积(AUC)


引言

在前面,我们学过的线性回归中,输出的都是连续性的函数值,那如果,我需要一个模型根据一个人的外貌预测他的性别呢?那么输出只有男或者女,这样就是一个分类的模型了。我们用什么来表示男和女呢?很容易想到,我们可以用0和1分别表示男和女,但是由于我们的线性模型的输出值是不定的函数值,所以不能简单的用线性模型来拟合了。我们想要输出0和1,如果可以找到一个函数只输出0和1就好了,或者输出值只在0和1之间,我们在0到1之间确定一个分界线(分类阈值),把靠近1的作为1输出,靠近0的作为0输出。这时我们就发现了sigmoid函数刚好可以满我们的需求。

sigmoid函数          F(x)=\frac{1}{1+e^{-x}}

逻辑回归(Logistics Regression

模型选择

我们知道线性回归的基本模型为  F(x)=\omega x+b  其中x可以为多个变量。但是sigmoid函数只能由一个变量x。那么假如我们把sigmoid函数中的x拆分为多个变量,把它认为是多个变量的整体。这时我们就可以用线性回归的形式把多个变量连系起来,然后再输入sigmoid函数中进行转换。

z=\sum_{i}^{}\omega _{i}x_{i}+b

\sigma (z)=\frac{1}{1+e^{-z}}

损失函数

那么我们的模型就建立好了,以上就是我们建立的模型,接下来想要训练该模型,就要定义一个损失函数了。那么对分类模型的损失函数就不能用L=(y-y_pre)^2 了。这个时候,我们的损失函数就是交叉熵损失函数

L=-y*log(\hat{y})-(1-y)*log(1-\hat{y})

之所以不能用平方误差损失函数,就是因为无论我们的预测值是不是接近我们的目标值。梯度都接近会为0。很容易陷入局部最优点。不利于对模型的训练。

梯度下降

通过对损失函数的求偏导,具体的求导过程,我就不一一列出来了。我们可以得到梯度为:

g=\sum-(\hat{y}^{n}-f_{w,b}(x^{n}))x^{n}_{i}

逻辑回归的向量化

我们的模型函数是

z=\sum_{i}^{}\omega _{i}x_{i}+b

\sigma (z)=\frac{1}{1+e^{-z}}

那假如有很多个变量x,我们的表达式就会很繁琐,那么,我们可以用X矩阵表示特征x,用矩阵W,表示\omega,这时b就等于b=x1*w1,x1=1,w1=b。

评估分类模型的有效性

基本概念

真正例 是指模型将正类别样本正确地预测为正类别。 True Positive,TP
真负例 是指模型将负类别样本正确地预测为负类别。 True Negative,TN
假正例 是指模型将负类别样本错误地预测为正类别。 False Positive,FP
假负例 是指模型将正类别样本错误地预测为负类别。 False Negative,FN
假正率:负 例被分为正例的比例(N为本身为负例的数量)

真正率:正 例被分为正例的比例(P为本身为例的数量)

精确率: 在被识别为正类别的样本中,确实为正类别的比例

召回率: 在所有正类别样本中,被正确识别为正类别的比例

准确率: 指模型预测正确的结果所占的比例

调和

举个例子:
有一个模型对100个肿瘤进行分类,分为恶性(正类别)或良性(负类别),
真正例(TP):1,假正例(FP):1,假负例(FN):8,真负例(TN):90
准确率=(1+90)/100=91%
虽然一看好像还挺高的,但是,假如我们用一个预测的结果总是良性的模型预测,也能达到91%的准确率,就是说我们用一个没有分类能力的模型,也能得到差不多的结果,那么就不能单用准确率来评估模型的好坏。我们就可以发现: 使用分类不平衡的数据集(正、负类别标签数量有明显差异)时,单单准确率一项并不能反映全面情况。
通过计算精确率和召回率分别为0.5和0.11。可以看出,这个模型并不是很好。
通过调节分类阈值,可以调节精确率和召回率,但是不信的是,这两个评估参数是此消彼长的关系,所以还是比较困难。那么我们就引入了ROC曲线。

ROC 和曲线下面积(AUC)

        ROC 曲线接收者操作特征曲线是一种显示分类模型在所有分类阈值下的效果的图表。绘制了真正率和假正率两个参数。通过不同的阈值,而得到不同的分类结果,然后得到不同的真正率和假正率的组合。然后绘画出这些点,最后将这些点连接起来,就是我们的ROC曲线。

例:

          

        ROC曲线可以用来评判分类效果,因为它是显示所有分类阈值的效果,所以其不受分类阈值的影响。

直接看ROC曲线,还是比较难观察,我们又引入了AUC(即曲线下的面积),AUC越大,则分类器分类效果越好,反之越差。AUC对所有可能的分类阈值的效果进行综合衡量。

和ROC曲线相似的还有精确召回曲线。如图:

(a)和(b)展示的是分类器在原始测试集(正负样本分布平衡)的结果。(c)和(d)是将测试集中负样本的数量增加到原来的10倍后分类器的结果。(a,c是ROC曲线,b,d是精确召回曲线)。
可以看出,ROC曲线基本保持原貌,而精确召回曲线则变化较大。

所以:ROC曲线的评估性能稳定,不受分类阈值的影响。而且对不平衡数据也有效。


制作不易,文明取用。

  • 9
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咔拉西

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值