BGD、SGD与人工神经网络

2016.12.14

今日为了完成老师的任务我复习了一下人工神经网络。发现在机器学习(Tom.M)里面的这本书提到了一个机器学习(周志华)没有提到的问题,就是周志华那本书里面所使用的BP算法是基于SGD(随机梯度下降)推导的,但实际上还有一种BP算法是基于BGD(批量梯度下降)推导的,查阅了一些资料都没有讲清楚二者的本质区别。我仔细研究之后,发现二者本质上的不同在于代价函数J_theta的不同。

BGD中采用的代价函数是SGD对于所有训练集成员的平均值,这就是网上所谓的BGD一次迭代考虑所有样例,SGD一次迭代考虑单个样例


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值