最大似然(likelihood)原理
假设一个随机试验,有若干可能结果
A1,A2,A3,...
A
1
,
A
2
,
A
3
,
.
.
.
如果只进行一次实验,而结果
Ak
A
k
出现了,那么我们就认为实验的条件对结果
Ak
A
k
的出现最有利。即实验出现的结果
Ak
A
k
的概率最大
最大似然法的基本思想
对于已经出现的样本值 x1,x2,x3,... x 1 , x 2 , x 3 , . . . ,适当的选取参数 θ θ ,使实验得出结果 X1=x1,X2=x2,X3=x3,... X 1 = x 1 , X 2 = x 2 , X 3 = x 3 , . . . 的概率最大
最大似然估计法的模型
设总体X为离散型随机变量,分布律为
其中 θ θ 是未知参数, X1,X2,X3,... X 1 , X 2 , X 3 , . . . 是来自总体 X X 的样本,是一组样本值。记
满足独立同分布的情况下上式等于
称 L(θ) L ( θ ) 为样本 x1,x2,x3,... x 1 , x 2 , x 3 , . . . 的似然函数。
由于 x1,x2,x3,... x 1 , x 2 , x 3 , . . . 是已经知道的,因此上述 L(θ) L ( θ ) 是关于 θ θ 的一元函数。
由于 L(θ) L ( θ ) 是事件 {X1=x1,X2=x2,...,Xn=xn} { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } 的概率,由最大似然函数的思想,希望求出的这样的 θ̂ θ ^ ,使得 L(θ̂ ) L ( θ ^ ) 达到 L(θ) L ( θ ) 的最大值