最大似然估计

最大似然(likelihood)原理

假设一个随机试验,有若干可能结果 A1,A2,A3,... A 1 , A 2 , A 3 , . . .
如果只进行一次实验,而结果 Ak A k 出现了,那么我们就认为实验的条件对结果 Ak A k 的出现最有利。即实验出现的结果 Ak A k 的概率最大

最大似然法的基本思想

对于已经出现的样本值 x1,x2,x3,... x 1 , x 2 , x 3 , . . . ,适当的选取参数 θ θ ,使实验得出结果 X1=x1,X2=x2,X3=x3,... X 1 = x 1 , X 2 = x 2 , X 3 = x 3 , . . . 的概率最大

最大似然估计法的模型

设总体X为离散型随机变量,分布律为

P{X=x}=p(x;θ) P { X = x } = p ( x ; θ )

其中 θ θ 是未知参数, X1,X2,X3,... X 1 , X 2 , X 3 , . . . 是来自总体 X X 的样本,x1,x2,x3,...是一组样本值。记
L(θ)=P{X1=x1,X2=x2,...,Xn=xn} L ( θ ) = P { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n }

满足独立同分布的情况下上式等于
L(θ)=i=1nP{Xi=xi}=i=1nP{xi;θ} L ( θ ) = ∏ i = 1 n P { X i = x i } = ∏ i = 1 n P { x i ; θ }

L(θ) L ( θ ) 为样本 x1,x2,x3,... x 1 , x 2 , x 3 , . . . 的似然函数。
由于 x1,x2,x3,... x 1 , x 2 , x 3 , . . . 是已经知道的,因此上述 L(θ) L ( θ ) 是关于 θ θ 的一元函数。
由于 L(θ) L ( θ ) 是事件 {X1=x1,X2=x2,...,Xn=xn} { X 1 = x 1 , X 2 = x 2 , . . . , X n = x n } 的概率,由最大似然函数的思想,希望求出的这样的 θ̂  θ ^ ,使得 L(θ̂ ) L ( θ ^ ) 达到 L(θ) L ( θ ) 的最大值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值