伪似然(Pseudo Likelihood)


前言

伪似然,顾名思义,就是真实分布未知,构造“假”的或近似于真实分布的函数来进行似然估计,对参数进行统计推断,但在构造的过程,只有正确的设定某些条件时,得到估计才能具有较好的性质。

伪似然估计方法只需要正确设定某些条件(如:条件均值,条件方差等),即使数据的概率分布误判时,仍能使用似然方法进行统计推断,是一种相对稳健的方法,在统计中有广泛的应用。


提示:以下是本篇文章正文内容

伪似然估计

伪似然是一种在真实分布未知,或基于误判分布的极大似然方法,虽然不知道总体的真实分布,但仍用似然函数的方法进行统计推断。需要正确假设某些条件,才能得到伪似然估计的大样本性质,例如:总体(条件)均值,条件方差。在真实分布未知时,可以使用伪似然方法估计参数,在一定条件下,可以得到估计的大样本性质。

1.估计

( Y i , X i ) , i = 1 , 2 , . . . , n (Y_i, X_i), i=1,2,..., n (Yi,Xi),i=1,2,...,n 为 iid 样本, f p ( Y i , X i ; θ ) f_p(Y_i, X_i; \theta) fp(Yi,Xi;θ) ( Y , X ) (Y,X) (Y,X) 假设的伪概率分布,则伪似然函数为
L p ( θ ; Y , X ) = Π i = 1 n f p ( Y i , X i ; θ )    。 ( 1 ) L_p(\theta; Y, X) = \Pi_{i=1}^n f_p(Y_i, X_i; \theta)\; 。\quad\quad (1) Lp(θ;Y,X)=Πi=1nfp(Yi,Xi;θ)(1)
极大化(1)式,得到参数的伪极大似然估计
θ ^ = arg max ⁡ θ ∈ Θ 1 n log ⁡ L p ( θ ; Y , X )    。 ( 2 ) \hat{\theta} = \argmax_{\theta\in\Theta}\frac{1}{n} \log L_p(\theta; Y, X)\; 。\qquad (2) θ^=θΘargmaxn1logLp(θ;Y,X)(2)

2.条件

1.仅假设条件均值情况下的伪似然估计

假设 E ( Y i ∣ X i = x i ) = g ( x i , θ ) , E(Y_i|X_i=x_i) = g(x_i,\theta), E(YiXi=xi)=g(xi,θ),
此时的伪似然估计为:
θ ^ = arg max ⁡ θ ∈ Θ 1 n ∑ i = 1 n log ⁡ f p ( Y i , g ( X i , θ ) )    \hat{\theta} = \argmax_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n} \log f_p(Y_i, g(X_i, \theta))\; θ^=θΘargmaxn1i=1nlogfp(Yi,g(Xi,θ))

注意:条件均值假设正确,且参数 θ \theta θ一阶可识别,在一些正则条件下,伪似然估计 θ ^ \hat{\theta} θ^相合的充要条件是构造的为概率分布为线性指数族
f p ( y , g ) = exp ⁡ { a ( g ) y + b ( g ) + c ( y ) } , f_p(y,g) = \exp\{a(g)y + b(g) + c(y)\}, fp(y,g)=exp{a(g)y+b(g)+c(y)},
其中, a ( ⋅ ) ,    b ( ⋅ ) ,    c ( ⋅ ) a(\cdot),\; b(\cdot),\;c(\cdot) a(),b(),c() 均为实值函数。

1.假设条件均值和条件方差情况下的伪似然估计

假设 E ( Y i ∣ X i = x i ) = g ( x i , θ ) , E(Y_i|X_i=x_i) = g(x_i,\theta), E(YiXi=xi)=g(xi,θ),
V a r ( Y i ∣ X i = x i ) = σ 2 ( x i , θ ) , Var(Y_i|X_i=x_i) =\sigma^2(x_i,\theta), Var(YiXi=xi)=σ2(xi,θ),
此时的伪似然估计为:
θ ^ = arg max ⁡ θ ∈ Θ 1 n ∑ i = 1 n log ⁡ f p ( Y i , g ( X i , θ ) , σ 2 ( X i , θ ) )    \hat{\theta} = \argmax_{\theta\in\Theta}\frac{1}{n}\sum_{i=1}^{n} \log f_p(Y_i, g(X_i, \theta), \sigma^2(X_i,\theta))\; θ^=θΘargmaxn1i=1nlogfp(Yi,g(Xi,θ),σ2(Xi,θ))

注意:条件均值和条件正确设定时,且参数 θ \theta θ二阶可识别,在一些正则条件下,伪似然估计 θ ^ \hat{\theta} θ^相合的充要条件是构造的为概率分布为二次指数族
f p ( y ; g , σ 2 ) = exp ⁡ { a ( g , σ 2 ) y + b ( g , σ 2 ) + c ( y ) + d ( g , σ 2 ) y 2 } , f_p(y;g,\sigma^2) = \exp\{a(g,\sigma^2)y + b(g,\sigma^2) + c(y) + d(g,\sigma^2)y^2\}, fp(y;g,σ2)=exp{a(g,σ2)y+b(g,σ2)+c(y)+d(g,σ2)y2},
其中, a ( ⋅ ) ,    b ( ⋅ ) ,    c ( ⋅ ) ,    d ( ⋅ ) a(\cdot),\; b(\cdot),\;c(\cdot),\;d(\cdot) a(),b(),c(),d() 均为实值函数。

  • 2
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值