loss_single()函数功能
它用于计算单一尺度级别特征图上的损失
参数解析:
1.cls_score (torch.Tensor): 单个尺度的类别分数,形状为 (N, num_anchors * num_classes, H, W),其中N是批次大小,num_anchors是每个位置的锚框数量,num_classes是类别数量,H和W是特征图的高和宽。
2.bbox_pred (torch.Tensor): 单个尺度的边界框预测,形状为 (N, num_anchors * 5, H, W)。5代表。x,y,w,h,角度
3.anchors (torch.Tensor): 每个尺度级别的锚框参考,形状为 (N, num_total_anchors, 5)。
4.labels (torch.Tensor): 每个锚框的标签,形状为 (N, num_total_anchors)。
5.label_weights (torch.Tensor): 每个锚框的标签权重,形状为 (N, num_total_anchors)。
6.bbox_targets (torch.Tensor): 每个锚框的边界框回归目标,形状为 (N, num_total_anchors, 5)。它是由标签分配得来的
7.bbox_weights (torch.Tensor): 每个锚框的边界框回归损失权重,形状为 (N, num_total_anchors, 5)。
8.num_total_samples (int): 如果进行采样,则为总锚框数;否则,它是正锚框的数量。
函数流程:
一.分类损失(loss_cls)的计算:
1.labels和label_weights被重塑为一维张量,cls_score通过permute和reshape操作被重塑,以匹配labels的维度。
2.使用self.loss_cls方法计算分类损失,传入重塑后的cls_score、labels、label_weights,以及avg_factor作为平均因子(通常是总样本数或正样本数)。
二.回归损失(loss_bbox)的计算:
1.bbox_targets和bbox_weights被重塑为与bbox_pred相匹配的形状。
2.如果设置了self.reg_decoded_bbox为True,则使用self.bbox_coder.decode方法对bbox_pred进行解码,这通常是将模型预测转换为实际的边界框坐标。
3.使用self.loss_bbox方法计算回归损失,传入bbox_pred、bbox_targets、bbox_weights,以及avg_factor。
代码详细解读:
# 计算单一尺度级别特征图损失
def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights,
bbox_targets, bbox_weights, num_total_samples):
# 将标签和标签权重重塑为一维张量,以便进行计算
labels = labels.reshape(-1)
label_weights = label_weights.reshape(-1)
# 调整分类得分的形状以匹配标签,从(N, num_anchors * num_classes, H, W)变为(-1, self.cls_out_channels)
cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
# 调用类别损失函数计算分类损失
loss_cls = self.loss_cls(
cls_score, labels, label_weights, avg_factor=num_total_samples)
# 将边界框目标和权重重塑为匹配的形状以进行回归损失计算
bbox_targets = bbox_targets.reshape(-1, 5)
bbox_weights = bbox_weights.reshape(-1, 5)
# 调整边界框预测的形状以进行计算
bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 5)
# 如果设置了解码边界框,对预测的边界框进行解码
if self.reg_decoded_bbox:
anchors = anchors.reshape(-1, 5)
bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)
# 调用边界框损失函数计算回归损失
loss_bbox = self.loss_bbox(
bbox_pred,
bbox_targets,
bbox_weights,
avg_factor=num_total_samples)
# 返回分类损失和回归损失
return loss_cls, loss_bbox