mmrotate代码解读之RotatedAnchorHead—loss_single()函数

本文详细介绍了loss_single函数,用于计算单尺度特征图上的分类和回归损失,涉及参数重塑、损失函数计算及边界框解码等步骤。
摘要由CSDN通过智能技术生成

loss_single()函数功能

它用于计算单一尺度级别特征图上的损失

参数解析:

1.cls_score (torch.Tensor): 单个尺度的类别分数,形状为 (N, num_anchors * num_classes, H, W),其中N是批次大小,num_anchors是每个位置的锚框数量,num_classes是类别数量,H和W是特征图的高和宽。

2.bbox_pred (torch.Tensor): 单个尺度的边界框预测,形状为 (N, num_anchors * 5, H, W)。5代表。x,y,w,h,角度

3.anchors (torch.Tensor): 每个尺度级别的锚框参考,形状为 (N, num_total_anchors, 5)。

4.labels (torch.Tensor): 每个锚框的标签,形状为 (N, num_total_anchors)。

5.label_weights (torch.Tensor): 每个锚框的标签权重,形状为 (N, num_total_anchors)。

6.bbox_targets (torch.Tensor): 每个锚框的边界框回归目标,形状为 (N, num_total_anchors, 5)。它是由标签分配得来的

7.bbox_weights (torch.Tensor): 每个锚框的边界框回归损失权重,形状为 (N, num_total_anchors, 5)。

8.num_total_samples (int): 如果进行采样,则为总锚框数;否则,它是正锚框的数量。

函数流程:

一.分类损失(loss_cls)的计算:

1.labels和label_weights被重塑为一维张量,cls_score通过permute和reshape操作被重塑,以匹配labels的维度。
2.使用self.loss_cls方法计算分类损失,传入重塑后的cls_score、labels、label_weights,以及avg_factor作为平均因子(通常是总样本数或正样本数)。

二.回归损失(loss_bbox)的计算:

1.bbox_targets和bbox_weights被重塑为与bbox_pred相匹配的形状。
2.如果设置了self.reg_decoded_bbox为True,则使用self.bbox_coder.decode方法对bbox_pred进行解码,这通常是将模型预测转换为实际的边界框坐标。
3.使用self.loss_bbox方法计算回归损失,传入bbox_pred、bbox_targets、bbox_weights,以及avg_factor。

代码详细解读:

# 计算单一尺度级别特征图损失
def loss_single(self, cls_score, bbox_pred, anchors, labels, label_weights,
                bbox_targets, bbox_weights, num_total_samples):

    # 将标签和标签权重重塑为一维张量,以便进行计算
    labels = labels.reshape(-1)
    label_weights = label_weights.reshape(-1)
    
    # 调整分类得分的形状以匹配标签,从(N, num_anchors * num_classes, H, W)变为(-1, self.cls_out_channels)
    cls_score = cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels)
    
    # 调用类别损失函数计算分类损失
    loss_cls = self.loss_cls(
        cls_score, labels, label_weights, avg_factor=num_total_samples)
    
    # 将边界框目标和权重重塑为匹配的形状以进行回归损失计算
    bbox_targets = bbox_targets.reshape(-1, 5)
    bbox_weights = bbox_weights.reshape(-1, 5)
    
    # 调整边界框预测的形状以进行计算
    bbox_pred = bbox_pred.permute(0, 2, 3, 1).reshape(-1, 5)
    
    # 如果设置了解码边界框,对预测的边界框进行解码
    if self.reg_decoded_bbox:
        anchors = anchors.reshape(-1, 5)
        bbox_pred = self.bbox_coder.decode(anchors, bbox_pred)

    # 调用边界框损失函数计算回归损失
    loss_bbox = self.loss_bbox(
        bbox_pred,
        bbox_targets,
        bbox_weights,
        avg_factor=num_total_samples)
    
    # 返回分类损失和回归损失
    return loss_cls, loss_bbox
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值