双线性函数基础

尝试回答下面问题:

双线性函数基础
1.什么是双线性函数?
2.举一个双线性函数的例子(除了最简单向量内积)
3.什么是双线性函数的度量矩阵?
4.写出一个你所举例子中的度量矩阵
5.用过渡矩阵对所选的基进行变换后,度量矩阵会发生怎样的变化?

对称双线性函数基础
1.什么是对称双线性函数,什么是反对称双线性函数?
2.对称双线性函数的度量矩阵是对称矩阵吗?如何证明?
3.是否有“若 f f f C \mathbb C C上的对称双线性函数且 f ( ξ , ξ ) = 0 f(\xi,\xi)=0 f(ξ,ξ)=0,则 ξ = 0 \xi=0 ξ=0”?
4.是否有“如果 f ( α , β ) f(\alpha,\beta) f(α,β)是定义在复数域线性空间上维数>1的对称双线性函数,则有线性无关的向量 ξ , η \xi,\eta ξ,η使得 f ( ξ , η ) = 1 , f ( ξ , ξ ) = f ( η , η ) = 0 f(\xi,\eta)=1, f(\xi,\xi)=f(\eta,\eta)=0 f(ξ,η)=1,f(ξ,ξ)=f(η,η)=0”?简述理由

反对称双线性函数基础
1.反对称双线性函数的度量矩阵是反对称矩阵吗?如何证明?
2.反称双线性函数的充要条件是 ∀ α ∈ V \forall \alpha\in V αV都有 f ( α , α ) = 0 f(\alpha,\alpha)=0 f(α,α)=0(北大第四P418 T13)

双线性函数基础和度量矩阵

什么是双线性函数?

f ( α , k 1 β 1 + k 2 β 2 ) = k 1 f ( α , β 1 ) + k 2 f ( α , β 2 ) f(\alpha, k_1\beta_1+k_2 \beta_2)=k_1f(\alpha, \beta_1)+k_2f(\alpha,\beta_2) f(α,k1β1+k2β2)=k1f(α,β1)+k2f(α,β2)
f ( k 1 α 1 + k 2 α 2 , β ) = k 1 f ( α 1 , β ) + k 2 f ( α 2 , β ) f(k_1\alpha_1+k_2\alpha_2, \beta)=k_1f(\alpha_1, \beta)+k_2f(\alpha_2,\beta) f(k1α1+k2α2,β)=k1f(α1,β)+k2f(α2,β)

能否举一个具体的双线性函数的例子(除了最简单向量内积)

f ( X , Y ) = T r ( X ′ A Y ) f(X,Y)=Tr(X'AY) f(X,Y)=Tr(XAY),其中 X , Y ∈ P m × n , A ∈ P m × m X,Y\in P^{m\times n}, A \in P^{m\times m} X,YPm×n,APm×m。验证它是双线性函数,只需 f ( X , k 1 Y + k 2 Y ) = T r ( X ′ A ( k 1 Y 1 + k 2 Y 2 ) ) = k 1 T r ( X ′ A Y 1 ) + k 2 T r ( X ′ A Y 2 ) f(X,k_1Y+k_2Y)=Tr(X'A(k_1Y_1+k_2Y_2))=k_1Tr(X'AY_1)+k_2Tr(X'AY_2) f(X,k1Y+k2Y)=Tr(XA(k1Y1+k2Y2))=k1Tr(XAY1)+k2Tr(XAY2)即可
这使用了迹的线性性质,这个双线性函数在欧几里得空间中是内积,且定义了名为Frobenuis的范数

什么是双线性函数的度量矩阵?

给出 f ( α , β ) f(\alpha,\beta) f(α,β) α \alpha α β \beta β所在空间V的一组基 ϵ 1 , . . . , ϵ n \epsilon_1,...,\epsilon_n ϵ1,...,ϵn,度量矩阵为 ( f ( ϵ i , ϵ j ) ) n × n (f(\epsilon_i,\epsilon_j))_{n\times n} (f(ϵi,ϵj))n×n

能否写出一个你所举例子中的度量矩阵?(北大第四P417 T10)

  • 先给出 P m × n P^{m\times n} Pm×n的一组基: E 1 , 1 , E 1 , 2 , . . . , E m , n E_{1,1},E_{1,2},...,E_{m,n} E1,1,E1,2,...,Em,n,其中 E i , j E_{i,j} Ei,j表示只有第i行第j列元素为1,其余元素为0
  • 先计算度量矩阵左上角的元素,计算Cannot read properties of undefined (reading 'type')
  • 计算Cannot read properties of undefined (reading 'type')
  • 计算Cannot read properties of undefined (reading 'type')
  • 根据上述一般结果写出矩阵即可。(附上草稿纸)
    附下草稿

用过渡矩阵对所选的基进行变换后,度量矩阵会发生怎样的变化?

“新基等于旧基度,新矩等于逆旧矩"这与内积的度量矩阵性质相同

对称双线性函数基础

什么是对称双线性函数,什么是反对称双线性函数?

对称双线性: f ( α , β ) = f ( β , α ) f(\alpha,\beta)=f(\beta,\alpha) f(α,β)=f(β,α)
反对称双线性: f ( α , β ) = − f ( β , α ) f(\alpha,\beta)=-f(\beta,\alpha) f(α,β)=f(β,α)

对称双线性函数的度量矩阵是对称矩阵吗?如何证明?

任意一组基下,对称双线性函数的度量矩阵正定。思路如下:

因为 ∀ α , β ∈ V , f ( α , β ) = X ′ A Y = ∑ i , j a i j x i y j = f ( β , α ) = Y ′ A X = ∑ i , j a i j y i x j \forall \alpha,\beta \in V, f(\alpha,\beta)=X'AY=\sum\limits_{i,j}a_{ij}x_iy_j=f(\beta,\alpha)=Y'AX=\sum\limits_{i,j}a_{ij}y_ix_j α,βV,f(α,β)=XAY=i,jaijxiyj=f(β,α)=YAX=i,jaijyixj根据对称双线性定义+二次型性质选取 X = ϵ i , Y = ϵ j X=\epsilon_i, Y=\epsilon_j X=ϵi,Y=ϵj,则有 a i j = a j i a_{ij}=a_{ji} aij=aji,证毕。

是否有“若 f f f C \mathbb C C上的对称双线性函数且 f ( ξ , ξ ) = 0 f(\xi,\xi)=0 f(ξ,ξ)=0,则 ξ = 0 \xi=0 ξ=0”?简述理由。(北大第四P418 T12)

不一定成立。// 这是定义在欧几里得空间中内积的正定性(欧几里得空间定义在 R \mathbb R R),这里不一定成立

  • 理由:可以选择一组基,使得 f f f在这组基下的度量矩阵为Cannot read properties of undefined (reading 'type')的形式,其中 r r r为度量矩阵的秩
    如果n=r=1,此时原命题成立,因为 f ( α , α ) = ( x 1 ) ′ ⋅ E 1 ⋅ ( x 1 ) = x 1 2 ≥ 0 f(\alpha,\alpha)=(x_1)'\cdot E_1 \cdot (x_1) =x_1^2 \geq0 f(α,α)=(x1)E1(x1)=x120
    如果 n ≥ 2 n\geq 2 n2,此时原命题不成立,原因:
    • n > r n>r n>r时我们可以找到一个 ξ \xi ξ的坐标为 ( 0 , . . . , 0 ⏟ r 个 零 , 1 , . . . , 1 ⏟ n − r 个 1 ) ′ (\underbrace{0,...,0}_{r个零},\underbrace{1,...,1}_{n-r个1})' (r 0,...,0,nr1 1,...,1)使得 f ( ξ , ξ ) = ξ ′ A ξ = 0 f(\xi,\xi)=\xi'A\xi=0 f(ξ,ξ)=ξAξ=0
      n = r n=r n=r时,我们可以找到一个 ξ \xi ξ的坐标为 ( 1 , i , 0... , 0 ) ′ (1,i,0...,0)' (1,i,0...,0)使得 f ( ξ , ξ ) = 0 f(\xi,\xi)=0 f(ξ,ξ)=0

是否有“如果 f ( α , β ) f(\alpha,\beta) f(α,β)是定义在复数域线性空间上维数>1的对称双线性函数,则有线性无关的向量 ξ , η \xi,\eta ξ,η使得 f ( ξ , η ) = 1 , f ( ξ , ξ ) = f ( η , η ) = 0 f(\xi,\eta)=1, f(\xi,\xi)=f(\eta,\eta)=0 f(ξ,η)=1,f(ξ,ξ)=f(η,η)=0”?简述理由

成立。可以使用构造法证明

ξ = ( 1 2 , i 2 , 0 , ⋯   , 0 ) \xi=(\frac{1}{\sqrt{2}},\frac{i}{\sqrt{2}},0,\cdots,0) ξ=(2 1,2 i,0,,0),这使得 f ( ξ , ξ ) = ( 1 2 , i 2 , 0 , ⋯   , 0 ) ′ E r ( 1 2 , i 2 , 0 , ⋯   , 0 ) = 0 f(\xi,\xi)=(\frac{1}{\sqrt{2}},\frac{i}{\sqrt{2}},0,\cdots,0)'E_r(\frac{1}{\sqrt{2}},\frac{i}{\sqrt{2}},0,\cdots,0)=0 f(ξ,ξ)=(2 1,2 i,0,,0)Er(2 1,2 i,0,,0)=0(f作为对称双线性函数,在上一题所选定的基下,度量矩阵为 E r E_r Er
η = ( 1 2 , − i 2 , 0 , . . . , 0 ) \eta=(\frac{1}{\sqrt{2}},\frac{-i}{\sqrt{2}},0,...,0) η=(2 1,2 i,0,...,0),这使得 f ( η , η ) = 0 f(\eta,\eta)=0 f(η,η)=0,且 f ( ξ , η ) = 1 f(\xi,\eta)=1 f(ξ,η)=1

反对称双线性函数基础

反对称双线性函数的度量矩阵是反对称矩阵吗?如何证明?

任意一组基下,反对称双线性函数的度量矩阵正定。思路同对称双线性函数

反称双线性函数的充要条件是 ∀ α ∈ V \forall \alpha\in V αV都有 f ( α , α ) = 0 f(\alpha,\alpha)=0 f(α,α)=0(北大第四P418 T13)

  • 必要性:提示:能否写出反称双线性函数的定义?

  • 充分性:由于 f ( α , α ) = 0 f(\alpha,\alpha)=0 f(α,α)=0对于任意 α \alpha α成立,故 ∀ β ∈ V , f ( α + β , α + β ) = 0 = f ( α , α ) + f ( α , β ) + f ( β , α ) + f ( β , β ) = f ( α , β ) + f ( β , α ) = 0 \forall\beta\in V, f(\alpha+\beta,\alpha+\beta)=0=f(\alpha,\alpha)+f(\alpha,\beta)+f(\beta,\alpha)+f(\beta,\beta)=f(\alpha,\beta)+f(\beta,\alpha)=0 βV,f(α+β,α+β)=0=f(α,α)+f(α,β)+f(β,α)+f(β,β)=f(α,β)+f(β,α)=0,所以反称。

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值