高等代数 具有度量的线性空间(第10章)1 双线性函数

在这里插入图片描述
一.双线性函数(10.1)
1.概念
(1)定义:
在这里插入图片描述
(2)示例:
在这里插入图片描述
在这里插入图片描述
2.双线性函数的表达式
(1)度量矩阵的概念:
在这里插入图片描述
在这里插入图片描述
(2)双线性型:
在这里插入图片描述
3.双线性函数在不同基下的度量矩阵间的关系
(1)双线性函数在不同基下的度量矩阵间的关系:

定理1:设 f f f是域 F F F n n n维线性空间 V V V上的1个双线性函数, V V V中取2个基 α 1 . . . α n α_1...α_n α1...αn β 1 . . . β n β_1...β_n β1...βn,设 ( β 1 . . . β n ) = ( α 1 . . . α n ) P ( 6 ) (β_1...β_n)=(α_1...α_n)P\qquad(6) (β1...βn)=(α1...αn)P(6) f f f在基 α 1 . . . α n α_1...α_n α1...αn和基 β 1 . . . β n β_1...β_n β1...βn下的度量矩阵分别为 A , B A,B A,B,则 B = P ′ A P ( 7 ) B=P'AP\qquad(7) B=PAP(7)注:2种证明均可
在这里插入图片描述
在这里插入图片描述
反之,如果 A ≃ B A\simeq B AB,则 A , B A,B A,B可看成是 V V V上同1个双线性函数 f f f V V V的不同基下的度量矩阵
在这里插入图片描述

(4)双线性函数的秩与矩阵秩:
在这里插入图片描述

注:可以证明:域 F F F n n n维线性空间 V V V上的双线性函数 f f f的矩阵秩不超过 f f f的秩.证明见 四.3.(3) 部分

二.特殊的双线性函数(10.1)
1.非退化的双线性函数
(1)双线性函数的左/右根:
在这里插入图片描述
在这里插入图片描述
(2)非退化的双线性函数:
在这里插入图片描述

定理2:域 F F F上的 n n n维线性空间 V V V上的双线性函数 f f f是非退化的,当且仅当 f f f V V V的1个基下的度量矩阵是满秩矩阵
在这里插入图片描述

2.(斜)对称双线性函数
(1)定义:
在这里插入图片描述
(2)充要条件:

f f f是域 F F F上的 n n n维线性空间 V V V上的1个双线性函数, f f f V V V的1个基 α 1 . . . α n α_1...α_n α1...αn下的度量矩阵为 A A A,则 f 是 对 称 的 ⇔ f ( α i , α j ) = f ( α j , α i ) i , j = 1 , 2... n ⇔ A ( i ; j ) = A ( j ; i )       i , j = 1 , 2... n ⇔ A 是 对 称 矩 阵 f是对称的\qquad\qquad\qquad\qquad\qquad\\⇔f(α_i,α_j)=f(α_j,α_i)\quad i,j=1,2...n\\⇔A(i;j)=A(j;i)\qquad\:\:\:\:\: i,j=1,2...n\\⇔A是对称矩阵\qquad\qquad\qquad\qquad\qquad ff(αi,αj)=f(αj,αi)i,j=1,2...nA(i;j)=A(j;i)i,j=1,2...nA类似地,有      f 是 斜 对 称 的     ⇔ f ( α i , α j ) = − f ( α j , α i ) i , j = 1 , 2... n ⇔ A ( i ; j ) = − A ( j ; i )     i , j = 1 , 2... n       ⇔ A 是 斜 对 称 矩 阵   \:\:\:\:f是斜对称的\qquad\qquad\qquad\qquad\qquad\\\,\,\,⇔f(α_i,α_j)=-f(α_j,α_i)\quad i,j=1,2...n\\⇔A(i;j)=-A(j;i)\qquad\,\,\: i,j=1,2...n\\\:\:\:\,\,⇔A是斜对称矩阵\qquad\qquad\qquad\qquad\qquad\: ff(αi,αj)=f(αj,αi)i,j=1,2...nA(i;j)=A(j;i)i,j=1,2...nA

(3)(斜)对称双线性函数的度量矩阵的最简单的形式:
在这里插入图片描述

定理3:设 f f f是特征不为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数,则 V V V ∃ 1 ∃1 1个基,使得 f f f在此基下的度量矩阵为对角矩阵
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
推论1:特征不为 2 2 2的域 F F F上的 n n n阶对称矩阵 A A A一定合同于1个对角矩阵,这个对角矩阵称为 A A A的1个合同标准型
在这里插入图片描述

在这里插入图片描述

定理4:设 f f f是特征不为2的域 F F F上的 n n n维线性空间 V V V上的斜对称双线性函数,则 ∃ V ∃V V 1 1 1个基,记成 δ 1 , δ − 1 . . . δ r , δ − r , η 1 . . . η s   ( 0 ≤ r ≤ n 2 , s = n − 2 r ) δ_1,δ_{-1}...δ_r,δ_{-r},η_1...η_s\,(0≤r≤\frac{n}{2},s=n-2r) δ1,δ1...δr,δr,η1...ηs(0r2n,s=n2r),使得 f f f在此基下的度量矩阵具有如下形式: d i a g { [ 0 1 − 1 0 ] . . . [ 0 1 − 1 0 ] , 0...0 } ( 16 ) diag\{\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]...\left[\begin{matrix}0&1\\-1&0\end{matrix}\right],0...0\}\qquad(16) diag{[0110]...[0110],0...0}(16)
在这里插入图片描述
在这里插入图片描述
推论1:特征不为 2 2 2的域 F F F上的 n n n阶斜对称矩阵 A A A一定合同于1个形如下式的分块对角矩阵: [ [ 0 1 − 1 0 ] . . . [ 0 1 − 1 0 ] 0 . . . 0 ] \left[\begin{matrix}\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]\\&...\\&&\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]\\&&&0\\&&&&...\\&&&&&0\end{matrix}\right] [0110]...[0110]0...0

注:特征为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数的度量矩阵的最简单的形式见 八 部分

三.对称双线性函数与二次型的关系(10.1)
1.二次函数
(1)概念:
在这里插入图片描述
(2)与对称双线性函数的关系:

定理5:设 V V V是特征不为2的域 F F F上的线性空间, q q q V V V上的1个二次函数,则存在 V V V上唯一的对称双线性函数 f f f,使得 f ( α , α ) = q ( α )   ( ∀ α ∈ V ) ( 27 ) f(α,α)=q(α)\,(\forallα∈V)\qquad(27) f(α,α)=q(α)(αV)(27)
在这里插入图片描述

2. f , q , A , x ′ A x f,q,A,x'Ax f,q,A,xAx的关系
(1) f , q , A , x ′ A x f,q,A,x'Ax f,q,A,xAx的关系:
在这里插入图片描述
(2)惯性定理:

定理6(惯性定理):实数域上任意1个 n n n元二次型都可以经过非退化线性替换变化化成规范形,并且其规范形是唯一的
在这里插入图片描述

3.维特消去定理的推广
(1)维特消去定理的推广:

定理7(维特消去定理的推广):设 F F F是特征不为2的域, A 1 , A 2 A_1,A_2 A1,A2 F F F上的 n n n级矩阵, B 1 , B 2 B_1,B_2 B1,B2 F F F上的 m m m对称矩阵.如果 [ A 1 0 0 B 1 ] ≃ [ A 2 0 0 B 2 ] ( 37 ) \left[\begin{matrix}A_1&0\\0&B_1\end{matrix}\right]\simeq\left[\begin{matrix}A_2&0\\0&B_2\end{matrix}\right]\qquad(37) [A100B1][A200B2](37) A 1 ≃ A 2 A_1\simeq A_2 A1A2,那么 B 1 ≃ B 2 B_1\simeq B_2 B1B2
在这里插入图片描述
在这里插入图片描述
推论:设 F F F是特征不为2的域, A 1 , A 2 A_1,A_2 A1,A2 F F F上的 n n n级矩阵, B 1 , B 2 B_1,B_2 B1,B2 F F F上的 m m m对称矩阵.如果 [ A 1 0 0 B 1 ] ≃ [ A 2 0 0 B 2 ] \left[\begin{matrix}A_1&0\\0&B_1\end{matrix}\right]\simeq\left[\begin{matrix}A_2&0\\0&B_2\end{matrix}\right] [A100B1][A200B2] B 1 ≃ B 2 B_1\simeq B_2 B1B2,那么 A 1 ≃ A 2 A_1\simeq A_2 A1A2
在这里插入图片描述

(2)惯性定理:
在这里插入图片描述
四.双线性函数空间(10.1)
1.概念
(1)概念:
在这里插入图片描述
(2)双线性函数与线性变换:
在这里插入图片描述
2.双线性函数空间的分解:
在这里插入图片描述

定理8:设 V V V是特征不为2的域 F F F上的线性空间,则 T 2 ( V ) = S 2 ( V ) ⊕ Λ 2 ( V ) T_2(V)=S_2(V)\oplusΛ_2(V) T2(V)=S2(V)Λ2(V)
在这里插入图片描述

3.双线性函数空间的基
(1)张量积:
在这里插入图片描述
(2)双线性函数空间的基:

定理9:设 V V V是域 F F F n n n维线性空间, V V V中取1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,它在 V ∗ V^* V中的对偶基为 f 1 , f 2 . . . f n f_1,f_2...f_n f1,f2...fn,则 { f i ⊗ f j   ∣   i , j = 1 , 2... n } \{f_i\otimes f_j\,|\,i,j=1,2...n\} {fifji,j=1,2...n} T 2 ( V ) T_2(V) T2(V)的1个基.设 V V V上的双线性函数 f f f α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn下的度量矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),则 f f f T 2 ( V ) T_2(V) T2(V)的基 f 1 ⊗ f 1 , f 1 ⊗ f 2 . . . f 1 ⊗ f n , f 2 ⊗ f 1 . . . f n ⊗ f 1 , f n ⊗ f n f_1\otimes f_1,f_1\otimes f_2...f_1\otimes f_n,f_2\otimes f_1...f_n\otimes f_1,f_n\otimes f_n f1f1,f1f2...f1fn,f2f1...fnf1,fnfn下的坐标为 ( a 11 , a 12 . . . a 1 n , a 21 . . . a 2 n . . . a n 1 . . . a n n ) ( 68 ) (a_{11},a_{12}...a_{1n},a_{21}...a_{2n}...a_{n1}...a_{nn})\qquad(68) (a11,a12...a1n,a21...a2n...an1...ann)(68) f = ∑ i = 1 n ∑ j = 1 n a i j f i ⊗ f j ( 69 ) f=\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^na_{ij}f_i\otimes f_j\qquad(69) f=i=1nj=1naijfifj(69)
在这里插入图片描述
ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr V V V上的1组双线性函数,如果 V V V上的双线性函数 f f f能表示成 f = ∑ i = 1 r ∑ j = 1 r b i j ξ i ⊗ ξ j ( 70 ) f=\displaystyle\sum_{i=1}^r\displaystyle\sum_{j=1}^rb_{ij}ξ_i\otimesξ_j\qquad(70) f=i=1rj=1rbijξiξj(70)那么称 f f f能用 ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr张量形式表示

(3)双线性函数的秩和矩阵秩:
在这里插入图片描述

命题1:如果 V V V上的双线性函数 f f f能用 V V V上的线性函数 ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr张量形式表示,那么 f f f的秩空间 W ⊆ < ξ 1 , ξ 2 . . . ξ r > W\sube<ξ_1,ξ_2...ξ_r> W<ξ1,ξ2...ξr>
在这里插入图片描述
推论:如果 V V V上的双线性函数 f f f能用 V V V上的 r r r个线性函数张量形式表示,那么 f f f的秩不超过 r r r
在这里插入图片描述

命题2: n n n维线性空间 V V V上的任一双线性函数 f f f能用其秩空间 W W W的任意1个基张量形式表示
在这里插入图片描述
推论1: n n n维线性空间 V V V上的双线性函数 f f f的秩等于能用张量形式表示 f f f V V V上线性函数的最小数目
在这里插入图片描述
推论2: n n n维线性空间 V V V上的双线性函数 f f f的矩阵秩不超过其秩
在这里插入图片描述
在这里插入图片描述

定理10:设 f f f是域 F F F n n n维线性空间 V V V上的对称双线性函数,则 f f f的矩阵秩等于其秩
在这里插入图片描述

五.特征为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数的度量矩阵的最简单的形式
在这里插入图片描述

定理11:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数,则 V V V中存在1个基,使得 f f f在此基下的度量矩阵 A A A为下述形式的分块对角矩阵: d i a g   { d 1 . . . d r , [ 0 1 1 0 ] . . . [ 0 1 1 0 ] } ( 76 ) diag\:\{d_1...d_r,\left[\begin{matrix}0&1\\1&0\end{matrix}\right]...\left[\begin{matrix}0&1\\1&0\end{matrix}\right]\}\qquad(76) diag{d1...dr,[0110]...[0110]}(76)其中 d i ∈ F   ( i = 1 , 2... r , 0 ≤ r ≤ n ) d_i∈F\,(i=1,2...r,0≤r≤n) diF(i=1,2...r,0rn)
在这里插入图片描述
在这里插入图片描述

定理12:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数.若 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵 A A A为下述形式的对角矩阵: d i a g   { d 1 . . . d r , 0 n − r } diag\:\{d_1...d_r,0_{n-r}\} diag{d1...dr,0nr}其中 0 ≠ d i ∈ F   ( i = 1 , 2... r , 0 ≤ r ≤ n ) 0≠d_i∈F\,(i=1,2...r,0≤r≤n) 0=diF(i=1,2...r,0rn)
在这里插入图片描述
a ∈ F a∈F aF,如果 ∃ b ∈ F ∃b∈F bF使得 b 2 = a b^2=a b2=a,那么称 a a a F F F的1个平方元
在这里插入图片描述
推论1:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数.若 F F F的每个非零元都是平方元,且 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵为下述形式的对角矩阵: d i a g   { I r , 0 n − r } diag\:\{I_r,0_{n-r}\} diag{Ir,0nr}其中 1 ≤ r ≤ n 1≤r≤n 1rn
在这里插入图片描述
推论2:设 f f f是域 F 2 m F_{2^m} F2m n n n维线性空间 V V V上的对称双线性函数.若 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵为下述形式的对角矩阵: d i a g   { I r , 0 n − r } diag\:\{I_r,0_{n-r}\} diag{Ir,0nr}其中 1 ≤ r ≤ n 1≤r≤n 1rn
在这里插入图片描述

  • 1
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值