高等代数 具有度量的线性空间(第10章)1 双线性函数

在这里插入图片描述
一.双线性函数(10.1)
1.概念
(1)定义:
在这里插入图片描述
(2)示例:
在这里插入图片描述
在这里插入图片描述
2.双线性函数的表达式
(1)度量矩阵的概念:
在这里插入图片描述
在这里插入图片描述
(2)双线性型:
在这里插入图片描述
3.双线性函数在不同基下的度量矩阵间的关系
(1)双线性函数在不同基下的度量矩阵间的关系:

定理1:设 f f f是域 F F F n n n维线性空间 V V V上的1个双线性函数, V V V中取2个基 α 1 . . . α n α_1...α_n α1...αn β 1 . . . β n β_1...β_n β1...βn,设 ( β 1 . . . β n ) = ( α 1 . . . α n ) P ( 6 ) (β_1...β_n)=(α_1...α_n)P\qquad(6) (β1...βn)=(α1...αn)P(6) f f f在基 α 1 . . . α n α_1...α_n α1...αn和基 β 1 . . . β n β_1...β_n β1...βn下的度量矩阵分别为 A , B A,B A,B,则 B = P ′ A P ( 7 ) B=P'AP\qquad(7) B=PAP(7)注:2种证明均可
在这里插入图片描述
在这里插入图片描述
反之,如果 A ≃ B A\simeq B AB,则 A , B A,B A,B可看成是 V V V上同1个双线性函数 f f f V V V的不同基下的度量矩阵
在这里插入图片描述

(4)双线性函数的秩与矩阵秩:
在这里插入图片描述

注:可以证明:域 F F F n n n维线性空间 V V V上的双线性函数 f f f的矩阵秩不超过 f f f的秩.证明见 四.3.(3) 部分

二.特殊的双线性函数(10.1)
1.非退化的双线性函数
(1)双线性函数的左/右根:
在这里插入图片描述
在这里插入图片描述
(2)非退化的双线性函数:
在这里插入图片描述

定理2:域 F F F上的 n n n维线性空间 V V V上的双线性函数 f f f是非退化的,当且仅当 f f f V V V的1个基下的度量矩阵是满秩矩阵
在这里插入图片描述

2.(斜)对称双线性函数
(1)定义:
在这里插入图片描述
(2)充要条件:

f f f是域 F F F上的 n n n维线性空间 V V V上的1个双线性函数, f f f V V V的1个基 α 1 . . . α n α_1...α_n α1...αn下的度量矩阵为 A A A,则 f 是 对 称 的 ⇔ f ( α i , α j ) = f ( α j , α i ) i , j = 1 , 2... n ⇔ A ( i ; j ) = A ( j ; i )       i , j = 1 , 2... n ⇔ A 是 对 称 矩 阵 f是对称的\qquad\qquad\qquad\qquad\qquad\\⇔f(α_i,α_j)=f(α_j,α_i)\quad i,j=1,2...n\\⇔A(i;j)=A(j;i)\qquad\:\:\:\:\: i,j=1,2...n\\⇔A是对称矩阵\qquad\qquad\qquad\qquad\qquad ff(αi,αj)=f(αj,αi)i,j=1,2...nA(i;j)=A(j;i)i,j=1,2...nA类似地,有      f 是 斜 对 称 的     ⇔ f ( α i , α j ) = − f ( α j , α i ) i , j = 1 , 2... n ⇔ A ( i ; j ) = − A ( j ; i )     i , j = 1 , 2... n       ⇔ A 是 斜 对 称 矩 阵   \:\:\:\:f是斜对称的\qquad\qquad\qquad\qquad\qquad\\\,\,\,⇔f(α_i,α_j)=-f(α_j,α_i)\quad i,j=1,2...n\\⇔A(i;j)=-A(j;i)\qquad\,\,\: i,j=1,2...n\\\:\:\:\,\,⇔A是斜对称矩阵\qquad\qquad\qquad\qquad\qquad\: ff(αi,αj)=f(αj,αi)i,j=1,2...nA(i;j)=A(j;i)i,j=1,2...nA

(3)(斜)对称双线性函数的度量矩阵的最简单的形式:
在这里插入图片描述

定理3:设 f f f是特征不为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数,则 V V V ∃ 1 ∃1 1个基,使得 f f f在此基下的度量矩阵为对角矩阵
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
推论1:特征不为 2 2 2的域 F F F上的 n n n阶对称矩阵 A A A一定合同于1个对角矩阵,这个对角矩阵称为 A A A的1个合同标准型
在这里插入图片描述

在这里插入图片描述

定理4:设 f f f是特征不为2的域 F F F上的 n n n维线性空间 V V V上的斜对称双线性函数,则 ∃ V ∃V V 1 1 1个基,记成 δ 1 , δ − 1 . . . δ r , δ − r , η 1 . . . η s   ( 0 ≤ r ≤ n 2 , s = n − 2 r ) δ_1,δ_{-1}...δ_r,δ_{-r},η_1...η_s\,(0≤r≤\frac{n}{2},s=n-2r) δ1,δ1...δr,δr,η1...ηs(0r2n,s=n2r),使得 f f f在此基下的度量矩阵具有如下形式: d i a g { [ 0 1 − 1 0 ] . . . [ 0 1 − 1 0 ] , 0...0 } ( 16 ) diag\{\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]...\left[\begin{matrix}0&1\\-1&0\end{matrix}\right],0...0\}\qquad(16) diag{[0110]...[0110],0...0}(16)
在这里插入图片描述
在这里插入图片描述
推论1:特征不为 2 2 2的域 F F F上的 n n n阶斜对称矩阵 A A A一定合同于1个形如下式的分块对角矩阵: [ [ 0 1 − 1 0 ] . . . [ 0 1 − 1 0 ] 0 . . . 0 ] \left[\begin{matrix}\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]\\&...\\&&\left[\begin{matrix}0&1\\-1&0\end{matrix}\right]\\&&&0\\&&&&...\\&&&&&0\end{matrix}\right] [0110]...[0110]0...0

注:特征为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数的度量矩阵的最简单的形式见 八 部分

三.对称双线性函数与二次型的关系(10.1)
1.二次函数
(1)概念:
在这里插入图片描述
(2)与对称双线性函数的关系:

定理5:设 V V V是特征不为2的域 F F F上的线性空间, q q q V V V上的1个二次函数,则存在 V V V上唯一的对称双线性函数 f f f,使得 f ( α , α ) = q ( α )   ( ∀ α ∈ V ) ( 27 ) f(α,α)=q(α)\,(\forallα∈V)\qquad(27) f(α,α)=q(α)(αV)(27)
在这里插入图片描述

2. f , q , A , x ′ A x f,q,A,x'Ax f,q,A,xAx的关系
(1) f , q , A , x ′ A x f,q,A,x'Ax f,q,A,xAx的关系:
在这里插入图片描述
(2)惯性定理:

定理6(惯性定理):实数域上任意1个 n n n元二次型都可以经过非退化线性替换变化化成规范形,并且其规范形是唯一的
在这里插入图片描述

3.维特消去定理的推广
(1)维特消去定理的推广:

定理7(维特消去定理的推广):设 F F F是特征不为2的域, A 1 , A 2 A_1,A_2 A1,A2 F F F上的 n n n级矩阵, B 1 , B 2 B_1,B_2 B1,B2 F F F上的 m m m对称矩阵.如果 [ A 1 0 0 B 1 ] ≃ [ A 2 0 0 B 2 ] ( 37 ) \left[\begin{matrix}A_1&0\\0&B_1\end{matrix}\right]\simeq\left[\begin{matrix}A_2&0\\0&B_2\end{matrix}\right]\qquad(37) [A100B1][A200B2](37) A 1 ≃ A 2 A_1\simeq A_2 A1A2,那么 B 1 ≃ B 2 B_1\simeq B_2 B1B2
在这里插入图片描述
在这里插入图片描述
推论:设 F F F是特征不为2的域, A 1 , A 2 A_1,A_2 A1,A2 F F F上的 n n n级矩阵, B 1 , B 2 B_1,B_2 B1,B2 F F F上的 m m m对称矩阵.如果 [ A 1 0 0 B 1 ] ≃ [ A 2 0 0 B 2 ] \left[\begin{matrix}A_1&0\\0&B_1\end{matrix}\right]\simeq\left[\begin{matrix}A_2&0\\0&B_2\end{matrix}\right] [A100B1][A200B2] B 1 ≃ B 2 B_1\simeq B_2 B1B2,那么 A 1 ≃ A 2 A_1\simeq A_2 A1A2
在这里插入图片描述

(2)惯性定理:
在这里插入图片描述
四.双线性函数空间(10.1)
1.概念
(1)概念:
在这里插入图片描述
(2)双线性函数与线性变换:
在这里插入图片描述
2.双线性函数空间的分解:
在这里插入图片描述

定理8:设 V V V是特征不为2的域 F F F上的线性空间,则 T 2 ( V ) = S 2 ( V ) ⊕ Λ 2 ( V ) T_2(V)=S_2(V)\oplusΛ_2(V) T2(V)=S2(V)Λ2(V)
在这里插入图片描述

3.双线性函数空间的基
(1)张量积:
在这里插入图片描述
(2)双线性函数空间的基:

定理9:设 V V V是域 F F F n n n维线性空间, V V V中取1个基 α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn,它在 V ∗ V^* V中的对偶基为 f 1 , f 2 . . . f n f_1,f_2...f_n f1,f2...fn,则 { f i ⊗ f j   ∣   i , j = 1 , 2... n } \{f_i\otimes f_j\,|\,i,j=1,2...n\} {fifji,j=1,2...n} T 2 ( V ) T_2(V) T2(V)的1个基.设 V V V上的双线性函数 f f f α 1 , α 2 . . . α n α_1,α_2...α_n α1,α2...αn下的度量矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),则 f f f T 2 ( V ) T_2(V) T2(V)的基 f 1 ⊗ f 1 , f 1 ⊗ f 2 . . . f 1 ⊗ f n , f 2 ⊗ f 1 . . . f n ⊗ f 1 , f n ⊗ f n f_1\otimes f_1,f_1\otimes f_2...f_1\otimes f_n,f_2\otimes f_1...f_n\otimes f_1,f_n\otimes f_n f1f1,f1f2...f1fn,f2f1...fnf1,fnfn下的坐标为 ( a 11 , a 12 . . . a 1 n , a 21 . . . a 2 n . . . a n 1 . . . a n n ) ( 68 ) (a_{11},a_{12}...a_{1n},a_{21}...a_{2n}...a_{n1}...a_{nn})\qquad(68) (a11,a12...a1n,a21...a2n...an1...ann)(68) f = ∑ i = 1 n ∑ j = 1 n a i j f i ⊗ f j ( 69 ) f=\displaystyle\sum_{i=1}^n\displaystyle\sum_{j=1}^na_{ij}f_i\otimes f_j\qquad(69) f=i=1nj=1naijfifj(69)
在这里插入图片描述
ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr V V V上的1组双线性函数,如果 V V V上的双线性函数 f f f能表示成 f = ∑ i = 1 r ∑ j = 1 r b i j ξ i ⊗ ξ j ( 70 ) f=\displaystyle\sum_{i=1}^r\displaystyle\sum_{j=1}^rb_{ij}ξ_i\otimesξ_j\qquad(70) f=i=1rj=1rbijξiξj(70)那么称 f f f能用 ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr张量形式表示

(3)双线性函数的秩和矩阵秩:
在这里插入图片描述

命题1:如果 V V V上的双线性函数 f f f能用 V V V上的线性函数 ξ 1 , ξ 2 . . . ξ r ξ_1,ξ_2...ξ_r ξ1,ξ2...ξr张量形式表示,那么 f f f的秩空间 W ⊆ < ξ 1 , ξ 2 . . . ξ r > W\sube<ξ_1,ξ_2...ξ_r> W<ξ1,ξ2...ξr>
在这里插入图片描述
推论:如果 V V V上的双线性函数 f f f能用 V V V上的 r r r个线性函数张量形式表示,那么 f f f的秩不超过 r r r
在这里插入图片描述

命题2: n n n维线性空间 V V V上的任一双线性函数 f f f能用其秩空间 W W W的任意1个基张量形式表示
在这里插入图片描述
推论1: n n n维线性空间 V V V上的双线性函数 f f f的秩等于能用张量形式表示 f f f V V V上线性函数的最小数目
在这里插入图片描述
推论2: n n n维线性空间 V V V上的双线性函数 f f f的矩阵秩不超过其秩
在这里插入图片描述
在这里插入图片描述

定理10:设 f f f是域 F F F n n n维线性空间 V V V上的对称双线性函数,则 f f f的矩阵秩等于其秩
在这里插入图片描述

五.特征为2的域 F F F上的 n n n维线性空间 V V V上的对称双线性函数的度量矩阵的最简单的形式
在这里插入图片描述

定理11:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数,则 V V V中存在1个基,使得 f f f在此基下的度量矩阵 A A A为下述形式的分块对角矩阵: d i a g   { d 1 . . . d r , [ 0 1 1 0 ] . . . [ 0 1 1 0 ] } ( 76 ) diag\:\{d_1...d_r,\left[\begin{matrix}0&1\\1&0\end{matrix}\right]...\left[\begin{matrix}0&1\\1&0\end{matrix}\right]\}\qquad(76) diag{d1...dr,[0110]...[0110]}(76)其中 d i ∈ F   ( i = 1 , 2... r , 0 ≤ r ≤ n ) d_i∈F\,(i=1,2...r,0≤r≤n) diF(i=1,2...r,0rn)
在这里插入图片描述
在这里插入图片描述

定理12:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数.若 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵 A A A为下述形式的对角矩阵: d i a g   { d 1 . . . d r , 0 n − r } diag\:\{d_1...d_r,0_{n-r}\} diag{d1...dr,0nr}其中 0 ≠ d i ∈ F   ( i = 1 , 2... r , 0 ≤ r ≤ n ) 0≠d_i∈F\,(i=1,2...r,0≤r≤n) 0=diF(i=1,2...r,0rn)
在这里插入图片描述
a ∈ F a∈F aF,如果 ∃ b ∈ F ∃b∈F bF使得 b 2 = a b^2=a b2=a,那么称 a a a F F F的1个平方元
在这里插入图片描述
推论1:设 f f f是特征为2的域 F F F n n n维线性空间 V V V上的对称双线性函数.若 F F F的每个非零元都是平方元,且 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵为下述形式的对角矩阵: d i a g   { I r , 0 n − r } diag\:\{I_r,0_{n-r}\} diag{Ir,0nr}其中 1 ≤ r ≤ n 1≤r≤n 1rn
在这里插入图片描述
推论2:设 f f f是域 F 2 m F_{2^m} F2m n n n维线性空间 V V V上的对称双线性函数.若 ∃ α 1 ∈ V ∃α_1∈V α1V使得 f ( α 1 , α 1 ) ≠ 0 f(α_1,α_1)≠0 f(α1,α1)=0,则 V V V中存在1个基使得 f f f在此基下的度量矩阵为下述形式的对角矩阵: d i a g   { I r , 0 n − r } diag\:\{I_r,0_{n-r}\} diag{Ir,0nr}其中 1 ≤ r ≤ n 1≤r≤n 1rn
在这里插入图片描述

  • 1
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 双线性变换是一种常见的信号处理方法,可以将连续时间信号转换为离散时间信号。传递函数(Transfer Function)则是描述信号在系统中传输过程的数学模型。SCDN是指一种特定的双线性变换传递函数。 SCDN,全称为Shifted Complementary Derivative Narrowband,是一种广泛应用于系统控制、滤波和信号处理中的传递函数模型。它通过将信号进行微分和积分的运算来实现频率范围的选择性放大或衰减。 SCDN传递函数的具体形式是: H(z) = K*(1-z^(-1))/(1-a*z^(-1)) 其中,z是单位延迟算子,K是增益常数,a是系统参数。SCDN传递函数中的分子部分包含了一阶微分运算,用于提高高频信号的增益;而分母部分包含了一阶积分运算,用于降低低频信号的增益。 SCDN传递函数可以实现信号的差分和积分操作,从而在选择性放大或衰减特定频率范围的信号时具有较好的性能。它常被用于频率域滤波、自适应信号处理和系统控制等应用中。在实际应用中,根据具体的系统需求和频率特性要求,可以通过调整增益常数K和系统参数a的值来实现不同的滤波效果。 总之,SCDN是一种双线性变换传递函数,通过微分和积分运算来选择性地放大或衰减特定频率范围的信号。它在信号处理和系统控制领域有广泛的应用。 ### 回答2: 双线性变换是一种定义在向量空间上的线性变换。在数学中,向量空间是由一组向量组成的集合,而线性变换则是指将一个向量映射到另一个向量的变换。双线性变换具有特殊的性质,即它在两个向量的加法运算和数乘运算下保持线性。这意味着对于任意的两个向量,双线性变换都遵循线性变换的性质。 传递函数是控制系统中用来描述输出与输入之间关系的函数。在信号处理中,传递函数通常用于描述系统对输入信号进行处理后的输出信号的变换过程。SCDN是一种常用的传递函数,它主要应用于网络中,用于描述网络传输过程中的延迟、带宽和丢包等性能指标。 SCDN传递函数是一个复杂的数学函数。具体而言,它提供了一个模型,用来表示信号在网络中传输时可能遇到的各种问题。例如,延迟表示信号从发送端到接收端所需的时间;带宽表示信号传输的最大速率;丢包表示在信号传输过程中丢失的数据包数量。通过将这些参数结合到SCDN传递函数中,我们可以更好地理解和掌握网络传输的性能。 SCDN传递函数在网络设计和优化中起着重要的作用。通过对网络传输过程进行建模和仿真,我们可以评估网络的性能,并提出改进的建议。例如,通过调整传输链路的参数,我们可以优化网络的传输速度和稳定性。此外,SCDN传递函数还可以用于网络状况的监测和故障排除,帮助我们找出网络中的问题并采取相应的措施。 总之,双线性变换和传递函数SCDN在数学和网络领域具有重要的意义。它们为我们了解和优化网络传输过程提供了有效的工具和方法。通过深入研究和应用这些理论和技术,我们可以更好地理解和控制网络传输的性能,提高网络的可靠性和效率。 ### 回答3: 双线性变换通常用于将一个复平面中的点映射到另一个复平面中的点。在信号处理领域,双线性变换经常被用来设计滤波器传递函数。 传递函数(Transfer Function)是描述线性时不变系统响应特性的数学模型,它将输入信号的频率响应映射到输出信号的频率响应。传递函数通常以s作为复变量表示,其中s=σ+jω,σ和ω分别表示实部和虚部。 SCDN(Second-Order Controlled Demopulator Network)是一种特定的双线性变换传递函数。它是用来设计二阶滤波器的传递函数具有较好的频率响应特性。 SCDN传递函数可以表示为: H(s) = (ωc^2) / (s^2 + γs + ωc^2) 其中,ωc为截止频率,γ为阻尼系数。 SCDN传递函数的频率响应特性受到了ωc和γ的控制。ωc决定了滤波器的截止频率,而γ则影响了滤波器的衰减速度。通过调整这两个参数,可以得到不同种类的响应特性,如低通、高通、带通或带阻滤波器。 SCDN传递函数在实际应用中有着广泛的用途,例如音频处理、图像处理等。在这些应用中,通过适当选择ωc和γ的值,可以实现对信号的频率特性进行调整,从而实现滤波、增强信号或者抑制噪声等效果。 总之,双线性变换传递函数SCDN是一种用来设计滤波器的传递函数,通过调整参数可以实现不同种类的频率响应特性。它在信号处理领域有着广泛的应用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值