每周一本书之《深度学习算法实践》:让你一站式了解深度学习算法

随着机器智能的进步,人类预测技能的价值将会降低。原因在于机器预测比人工预测更为低价和优质,正如机器算数肯定比人力算数更为迅速准确。然而,这却并不像许多专家预言的意味着人类工作的末日,因为人类判断技能的价值将得以凸显。用经济学语言表述就是,判断是预测的互补品,因此当预测的成本降低,对判断的需求就会增大。

——The Simple Economics of Machine Intelligence,《哈佛商业评论》

当年互联网的大潮席卷一切时,数字通信技术被认为将颠覆商业、改变一切。之后的移动互联网也在某种程度上被认为将颠覆商业。经济学家总体上并没有被当时的互联网泡沫所忽悠。

现如今,有关人工智能的报道铺天盖地,有昔日“新经济”泡沫之势。这一次,基本的经济学原理和框架就足以帮助我们理解和预测这一技术形态对商业产生的影响。技术革命往往会使某些重要活动的成本降低,比如说通信或搜索信息等活动。究其实质,人工智能或者机器智能(Machine Intelligence)是一项预测技术,因此它的经济影响将围绕降低预测成本这个中心来展开。

对于已经身处这个大潮中的开发者、架构师、数据分析人员等,只能去拥抱这项技术。深度学习并不是一项凭空冒出来的技术,它在机器学习之上做了很多优化。本质上所有的有监督学习都是在探讨怎样无限地逼近目标函数(强化学习另外讨论),而深度网络就是让机器代替人类提取特征的工作变得更有可能真正实现。在经济学家的眼里,现阶段人工智能的本质是从预测(或分类问题)开始。

本周,小编将为大家推荐一本关于深度学习算法的书——《深度学习算法实践》

深度学习_大数据_人工智能_图书-1

《深度学习算法实践》以一位软件工程师在工作中遇到的问题为主线,阐述了如何从软件工程思维向算法思维转变、如何将任务分解成算法问题,并结合程序员在工作中经常面临的产品需求,详细阐述了应该怎样从算法的角度看待、分解需求,并结合经典的任务对深度学习算法做了清晰的分析。

该书在表达上深入浅出,让有志于学习深度学习的读者,能够快速地理解核心所在,并顺利上手实践。

从内容上本书一共分为6章:

第1章,主要讲从工程思维到算法思维的转变,对于有基础的读者来说稍显啰唆,但很重要,希望读者能仔细阅读。

第2章,阐述文本分析、文本深度特征等内容,已有基础的读者可以根据自己的需求部分略过。

第3章,主要介绍对话机器人的相关技术和发展。

第4章,主要介绍视觉,以人脸检测为例,从传统的OpenCV模式识别做人脸检测到用CNN网络做人脸表情识别。勾勒CNN的传承发展,讲述做图像分类、目标识别等其他应用。

第5章,主要讲区别于一般的有监督学习的另一个问题:强化学习和DQN网络实践。

第6章,主要讲预测与推荐,以股票为例,并同时讨论了深度学习在推荐领域的应用。

作者简介

吴岸城,致力于深度学习在文本、图像领域的应用。曾中兴通讯、亚信联创担任研发经理、技术经理等职务,现任菱歌科技首席算法科学家一职。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值