题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1754
题目大意: 给出初始化区间的值,有m次操作
Q a b询问[a,b]区间中的最大值,U a b将第a个元素替换为b
解题思路: 线段树 更新:单点替换 询问:区间询问
每次更新的时候在区间结点存储此区间的最大值,查询的时候就不需要每次都查到最下面
更新时间复杂度O(logN),询问时间复杂度O(logN)
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define MAXN 200005
#define MAX(a,b) a>b?a:b
#define MID(a,b) (a+b)>>1
#define L(a) a<<1
#define R(a) (a<<1)+1
typedef struct snode{
int left,right;
int max;
}Node;
Node Tree[MAXN<<2];
int num[MAXN],max;
void Build(int t,int l,int r) //以t为根结点,建立左子树为l,右子树为r的线段树
{
int mid;
Tree[t].left=l,Tree[t].right=r;
if(Tree[t].left==Tree[t].right)
{
Tree[t].max=num[l];
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
Build(L(t),l,mid);
Build(R(t),mid+1,r);
Tree[t].max=MAX(Tree[L(t)].max,Tree[R(t)].max); //根结点的最大值为MAX(左子树,右子树)
}
void Insert(int t,int l,int r,int n) //向根结点为t,左子树为l,右子树为r的区间替换元素n
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
{
Tree[t].max=n;
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
if(l>mid)
Insert(R(t),l,r,n);
else if(r<=mid)
Insert(L(t),l,r,n);
else
{
Insert(L(t),l,mid,n);
Insert(R(t),mid+1,r,n);
}
Tree[t].max=MAX(Tree[L(t)].max,Tree[R(t)].max); //每次插入从下往上更新
}
void Query(int t,int l,int r) //查询根结点为t,左子树为l,右子树为r的区间最大值
{
int mid;
if(Tree[t].left==l&&Tree[t].right==r)
{
if(max<Tree[t].max)
max=Tree[t].max;
return ;
}
mid=MID(Tree[t].left,Tree[t].right);
if(l>mid)
Query(R(t),l,r);
else if(r<=mid)
Query(L(t),l,r);
else
{
Query(L(t),l,mid);
Query(R(t),mid+1,r);
}
}
int main()
{
char ch;
int n,m,i,a,b;
while(scanf("%d%d",&n,&m)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d",&num[i]);
memset(Tree,0,sizeof(Tree)); //初始化线段树
Build(1,1,n); //1节电为根结电建立线段树
getchar();
for(i=0;i<m;i++)
{
scanf("%c",&ch);
scanf("%d%d",&a,&b);
if(ch=='U')
Insert(1,a,a,b); //第a个元素的值替换成b
else
{
max=0;
Query(1,a,b); //询问[a,b]区间的最大值
printf("%d\n",max);
}
getchar();
}
}
return 0;
}
注:原创文章,转载请注明出处