1、线性回归
1.1 一元线性回归
一元线性回归是用来描述自变量和因变量都只有一个的情况,可以用y=a*x+b.学习一元线性模型的过程就是通过训练数据集得到最合适的a和b的过程,也就是说该一元线性模型的参数即a和b。
如何判断一个模型的好与不好
看我们的预测值和真实值之间的差距
我们使用平均值 来表示
可以通过最小二乘法(又称最小平方法)来寻找最优的参数a和b
一元线性回归算法的实现代码:
import numpy as np
import matplotlib.pyplot as plt
class SimpleLinearRegressionSelf:
def __init__(self):
self.a_ = None
self.b_ = None
def fix(self,x_train, y_train):
assert x_train.ndim ==1, \
"一元线性回归模型仅能处理向量,不能处理矩阵"
x_mean = np.mean(x_train)
y_mean = np.mean(y_train)
# 分母
denominator = 0.0
# 分子
numberator = 0.0
for x_i, y_i in zip(x, y):
numberator += (x_i - x_mean) * (y_i - y_mean)
denominator += (x_i - x_mean) ** 2
self.a_ = numberator / denominator
self.b_ = y_mean - self.a_ * x_mean
return self
# x_test_group是向量的集合
def predict(self, x_test_group):
# 此处是for循环的列表解析式
'''
例如
a = [1,2,3,4,5,6,7,8,9,10]
b = [x**2 for x in a]
print(b)
运行结果
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
在这个代码中,输入序列是a,运算表达式是x**2 循环表达式相当于是for x in a**2
'''
# 对x_test_group进行遍历,然后把得到的预测值变成一个列表
return np.array([self._predict(x_test) for x_test in x_test_group])
def _predict(self,x_test):
return self.a_ * x_test + self.b_ # 求取每一个输入的x_test得到的预测值
def mean_squared_error(self,y_true,y_predict):
return np.sum((y_true - y_predict) **2) / len(y_true)
# 误差衡量 R Squared
def r_square(self, y_true, y_predict):
# var() 求方差
return 1 - (self.mean_squared_error(y_true,y_predict) / np.var(y_true))
if __name__ == '__main__':
x = np.array([1, 2, 4, 6, 8])
y = np.array([2, 5, 7, 8, 9])
lr = SimpleLinearRegressionSelf()
lr.fix(x, y)
print(lr.predict([7]))
print(lr.r_square([8, 9], lr.predict([6, 8])))
# x_mean = x.mean()
# y_mean = y.mean()
# # 分母
# denominator = 0.0
# # 分子
# numberator = 0.0
# for x_i,y_i in zip(x,y):
# numberator += (x_i- x_mean) *(y_i- y_mean)
# denominator += (x_i- x_mean)**2
# a = numberator / denominator
# b = y_mean- a*x_mean
#
# y_pred = x*a+b
# plt.scatter(x,y,color='b')
# plt.plot(x,y_pred,color='r')
# plt.xlabel('管子的长度',fontproperties = 'simHei', fontsize = 15)
# plt.ylabel('收费',fontproperties = 'simHei', fontsize = 15)
# plt.show()
执行结果: