经过研究大量的与电影票房有关的各种文献,我们很容易发现西方在该方面的理论体系更为完整,因为西方在工业革命后经济飞速发展,而我国还处于闭关锁国的状态,但是因为改革开放后我国经济有了极大的提升,所以我国也开对电影票房的研究投入了更多的精力。
电影票房预测从美国开始,最初的研究是通过对观众发放调查问卷,大家把这种研究称为“观众研究”,目的是通过对观众的电影类型票好进行简单的收集以此促进电影票房的增加。里奥德尔是电影研究局的工作人员,他和观众调查局的乔治盖洛普是“观众研究”的著名研究人员,但是他们用来采集和分析观众偏好的方法并不相同,但目的都是为了对票房产生影响和预估。他们为什么在众多研究者中脱颖日出呢?这是因为他们发现了影响票房的因素是非常多的,例如对电影的宣传程度、演员的知名度、观众的口碑以及电影所讲述的故事等,这些因素在后来的研究中被分析的更加透彻。不久之后,巴瑞李特曼第一次提出运用线性回归建立一个电影收入预测模型,该模型的自变量和因变量分别是对票房产生影响的因素和电影票房收入。从二十一世纪初开始,互联网将全球连接起来,人与人之间的交流范围更加广阔的同时也意味着原来的电影票房的预测已经不在适用于当下。于是研究人员不在使用之前的研究方案,改变为在网络上对关于电影的评论进行一个汇总,构建一个更加精准的票房预测模型,于是微博、谷歌、推特等预测模型随之而来。。
(1)如何实现电影基本信息(如电影名字、导演、票房等)的录入、修改和删除功能。例如,当有新的电影上映时,系统需要能够方便地将这些电影的详细信息添加到数据库中。对于信息有误的电影记录,要有修改功能。
(2)确保电影信息的准确性和完整性。在录入过程中,可能会出现输入错误或者信息遗漏的情况,需要通过设置数据验证规则来避免,如电影编号不能为空,编号必须符合一定的格式等。
(3)如何有效地管理用户的基本信息(如姓名、性别、年龄、联系方式、借阅证号等)。包括用户信息的注册、修改和注销。
(4)如何处理用户信息的安全性。用户的个人信息(如联系方式、身份证号等)需要保密,要通过合适的权限设置和数据加密等手段来防止信息泄露。
(5)如何记录电影票房的信息和订单情况。包括记录上映日期、导演、演员等信息。
(6)确保在大量电影信息和用户信息存储的情况下,系统的查询、添加、修改等操作能够快速响应。并且保证系统在长时间运行过程中不会出现频繁崩溃的情况。
(7)设计一个简洁、直观的用户界面,方便管理员和用户使用。通过合理的数据库表结构来存储电影信息、用户信息和以及推荐电影信息。
一、初步方案:
首先,可以对电影票房历年数据进行调查,为系统设计提供依据。同时查阅国内外相关文献,了解电影购买推荐信息系统的研究现状和发展趋势,为研究提供理论支持。
其次,对电影票房爬取及分析进行系统分析,明确系统的功能结构、数据流程和业务逻辑,为系统开发奠定基础。
其中要明确电影管理系统的要求:
(1)设计电影票房爬取及分析系统的总体架构,包括前端用户界面、后端数据库及中间层服务等部分。
(2)实现电影票房信息的抓取、查询、统计等核心功能。
(3)提供用户(包括管理员和用户)管理功能,如用户注册、登录、权限分配等。
(4)引入数据备份与恢复机制,确保系统数据安全。
(5)设计并实现友好的用户界面,提高系统的易用性。
(6)进行系统测试,确保功能稳定、性能达标。
最后,具体工作内容:
(1)系统需求分析:包括用户登录、电影信息管理、用户信息管理、统计管理和系统维护等功能。
(2)系统架构设计:采用B/S架构,分为前端和后端两部分。前端负责展示用户界面,后端负责处理业务逻辑和数据操作。
(3)功能模块设计:用户登录模块:验证用户身份,区分管理员和普通用户。电影信息管理模块:管理员对电影信息进行增删改查操作。用户信息管理模块:管理员查看、修改、删除用户信息。
(4)数据库设计:使用mysql作为后台数据库,设计jiu,orders等数据表。
(5)核心代码实现:包括用户注册、登录验证、电影票房信息查询、用户信息修改等功能的具体代码实现。