【CQOI2014】危桥

题目大意:

Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1。某些岛屿之间有桥相连,桥上的道路是双向的,但一次只能供一人通行。其中一些桥由于年久失修成为危桥,最多只能通行两次。

Alice希望在岛屿a1和a2之间往返an次(从a1到a2再从a2到a1算一次往返)。同时,Bob希望在岛屿b1和b2之间往返bn次。这个过程中,所有危桥最多通行两次,其余的桥可以无限次通行。请问Alice和Bob能完成他们的愿望吗?

思路:

网络流的最大流,危险桥梁的流量为2,一般桥梁为无限,然后原点和a1,b1连接流量为2*an的边,同理a2,b2和汇点这样连接,这样如果流量是满的话,就说明a,b可以来回走一次,满足题意。但是从原点a出去的流量会像b的汇点流去,所以要把b的首位反过来再做一次最大流。

程序:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define maxn 2505
#define inf 0x7fffffff
#define T 51
#define M 55
using namespace std;
int n,m,a1,a2,an,b1,b2,bn,cnt,ans;
int f[M][M],head[M],cur[M],h[M],q[M];
struct data{int to,next,w;}e[maxn*4];

void add(int x,int y,int w){
    e[++cnt].to=y; e[cnt].w=w; e[cnt].next=head[x]; head[x]=cnt;
    e[++cnt].to=x; e[cnt].w=0; e[cnt].next=head[y]; head[y]=cnt;
}

void build(){
    memset(head,0,sizeof(head)); cnt=1;
    for (int i=1;i<=n;i++)
      for (int j=1;j<=n;j++){
        if (f[i][j]==1) add(i,j,2);
        else if (f[i][j]==2) add(i,j,inf);
      }

}

bool bfs(){
    int t=0,w=1;
    for (int i=0;i<=T;i++) h[i]=-1;
    q[0]=0; h[0]=0;
    while (t!=w){
        int now=q[t];t++;
        for (int i=head[now];i;i=e[i].next){
            if (e[i].w&&h[e[i].to]==-1){
                h[e[i].to]=h[now]+1;
                q[w++]=e[i].to;
            }
        }
    }
    if (h[T]==-1) return 0;
    return 1;

}

int dfs(int x,int f){
    if (x==T) return f;
    int w,used=0;
    for (int i=cur[x];i;i=e[i].next){
        if (e[i].w&&h[e[i].to]==h[x]+1){
            w=f-used;
            w=dfs(e[i].to,min(e[i].w,w));
            e[i].w-=w;
            if (e[i].w) cur[x]=i;
            e[i^1].w+=w;
            used+=w;
            if (used==f) return f;
        }
    }
    if (!used) h[x]=-1;
    return used;
}

void dinic(){   
    while (bfs()){
      for (int i=0;i<=T;i++)    cur[i]=head[i];
      ans+=dfs(0,inf);      
    }
}

int main(){
    while (scanf("%d%d%d%d%d%d%d",&n,&a1,&a2,&an,&b1,&b2,&bn)!=EOF){
      memset(f,0,sizeof(f));
      int flag=0;
      a1++; a2++; b1++; b2++;

      for (int i=1;i<=n;i++){
        char s[55];
        scanf("%s",s);
        for (int j=1;j<=n;j++){
            if (s[j-1]=='O') f[i][j]=1; else 
            if (s[j-1]=='N') f[i][j]=2;
        }
      }

      build();
      add(0,a1,an*2); add(a2,T,an*2);
      add(0,b1,bn*2); add(b2,T,bn*2);
      ans=0;

      dinic();
      if (ans<2*(an+bn)) flag=1;
      if (!flag){
        build();
        add(0,a1,an*2); add(a2,T,an*2);
        add(0,b2,bn*2); add(b1,T,bn*2);
        ans=0;
        dinic();
        if (ans<2*(an+bn)) flag=1;
      }
      if (!flag) printf("YES\n");
            else printf("NO\n");
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值