题目大意:
Alice和Bob居住在一个由N座岛屿组成的国家,岛屿被编号为0到N-1。某些岛屿之间有桥相连,桥上的道路是双向的,但一次只能供一人通行。其中一些桥由于年久失修成为危桥,最多只能通行两次。
Alice希望在岛屿a1和a2之间往返an次(从a1到a2再从a2到a1算一次往返)。同时,Bob希望在岛屿b1和b2之间往返bn次。这个过程中,所有危桥最多通行两次,其余的桥可以无限次通行。请问Alice和Bob能完成他们的愿望吗?
思路:
网络流的最大流,危险桥梁的流量为2,一般桥梁为无限,然后原点和a1,b1连接流量为2*an的边,同理a2,b2和汇点这样连接,这样如果流量是满的话,就说明a,b可以来回走一次,满足题意。但是从原点a出去的流量会像b的汇点流去,所以要把b的首位反过来再做一次最大流。
程序:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#define maxn 2505
#define inf 0x7fffffff
#define T 51
#define M 55
using namespace std;
int n,m,a1,a2,an,b1,b2,bn,cnt,ans;
int f[M][M],head[M],cur[M],h[M],q[M];
struct data{int to,next,w;}e[maxn*4];
void add(int x,int y,int w){
e[++cnt].to=y; e[cnt].w=w; e[cnt].next=head[x]; head[x]=cnt;
e[++cnt].to=x; e[cnt].w=0; e[cnt].next=head[y]; head[y]=cnt;
}
void build(){
memset(head,0,sizeof(head)); cnt=1;
for (int i=1;i<=n;i++)
for (int j=1;j<=n;j++){
if (f[i][j]==1) add(i,j,2);
else if (f[i][j]==2) add(i,j,inf);
}
}
bool bfs(){
int t=0,w=1;
for (int i=0;i<=T;i++) h[i]=-1;
q[0]=0; h[0]=0;
while (t!=w){
int now=q[t];t++;
for (int i=head[now];i;i=e[i].next){
if (e[i].w&&h[e[i].to]==-1){
h[e[i].to]=h[now]+1;
q[w++]=e[i].to;
}
}
}
if (h[T]==-1) return 0;
return 1;
}
int dfs(int x,int f){
if (x==T) return f;
int w,used=0;
for (int i=cur[x];i;i=e[i].next){
if (e[i].w&&h[e[i].to]==h[x]+1){
w=f-used;
w=dfs(e[i].to,min(e[i].w,w));
e[i].w-=w;
if (e[i].w) cur[x]=i;
e[i^1].w+=w;
used+=w;
if (used==f) return f;
}
}
if (!used) h[x]=-1;
return used;
}
void dinic(){
while (bfs()){
for (int i=0;i<=T;i++) cur[i]=head[i];
ans+=dfs(0,inf);
}
}
int main(){
while (scanf("%d%d%d%d%d%d%d",&n,&a1,&a2,&an,&b1,&b2,&bn)!=EOF){
memset(f,0,sizeof(f));
int flag=0;
a1++; a2++; b1++; b2++;
for (int i=1;i<=n;i++){
char s[55];
scanf("%s",s);
for (int j=1;j<=n;j++){
if (s[j-1]=='O') f[i][j]=1; else
if (s[j-1]=='N') f[i][j]=2;
}
}
build();
add(0,a1,an*2); add(a2,T,an*2);
add(0,b1,bn*2); add(b2,T,bn*2);
ans=0;
dinic();
if (ans<2*(an+bn)) flag=1;
if (!flag){
build();
add(0,a1,an*2); add(a2,T,an*2);
add(0,b2,bn*2); add(b1,T,bn*2);
ans=0;
dinic();
if (ans<2*(an+bn)) flag=1;
}
if (!flag) printf("YES\n");
else printf("NO\n");
}
}