深度学习之风格迁移具体实现

本文介绍了使用深度学习中的VGG-16模型进行图像风格迁移的实践过程,包括加载预训练的npy文件,构建网络架构,并展示了内容图片、风格图片及最终的合成效果。
摘要由CSDN通过智能技术生成

npy文件

在网上可以下载到关于VGG-16的npy文件,这个是已经训练好的模型,文件保存的是训练好的相关参数,大约1.3亿个参数。npy文件,是以python的nupmy保存的文件,可以使用numpy来提取。

import numpy as np
data = np.load(r'D:\BaiduNetdiskDownload\vgg16.npy',allow_pickle=True,encoding='latin1')

dict_data = data.item()
print(dict_data.keys())
'''
效果:可以打印出每个卷积层和全连接的名字,通过其可以提取到对应的权重和偏置
dict_keys(['conv5_1', 'fc6', 'conv5_3', 
'conv5_2', 'fc8', 'fc7', 'conv4_1', 
'conv4_2', 'conv4_3', 'conv3_3',
 'conv3_2', 'conv3_1', 'conv1_1', 
 'conv1_2', 'conv2_2', 'conv2_1'])

'''

构建网络架构

'''
	构建网络架构200多行代码,主体为: 读取要转换的原图
								   构建模型类,
								   然后调用模型类
								   构建损失函数
								   梯度下降
								   开启会话
								   执行训练
								   保存图片
'''
import os
import numpy as np
import tensorflow as tf
from PIL import Image
import time

# 超参数
VGG_MEAN = [103.939, 116.778, 123.68]
path_Vgg16 = 'vgg16.npy' # vgg16.npy模型所在路径
output_dir = './run_style_trainsfer'
if not os.path.exists(output_dir):
    os.mkdir(output_dir)
num_steps = 201
learning_rate = 10
lambda_c = 1
lambda_s = 20


# 读取图片(其中做个两个技巧:
#							1,将不是rgb格式的图片转为rgb格式
#							2,重新设置图片的尺寸为:224,224,3)
def read_img(img_name):

    img = Image.open(img_name)
    # 因为使用的是vgg16模型,所以图片像素格式为:224,224,3 如果不是,需要事先处理
    if img.mode != "RGB":
        img = img.convert("RGB")

    # 设置尺寸
    img = img.resize((224, 224), Image.ANTIALIAS)
    np_img = np.array(img) # 224.224.3
    np_img = np.asarray([np_img],dtype=np.int32) # 1,224,224,3
    return np_img


# 内容图像[[[]]]
content_val = read_img(input('请输入内容图片名:'))
# 风格图像
style_val = read_img(input('请输入风格图片名:'))


# 获得一个初始化的矩阵
def initial_result(shape,mean,stddev):
    initial = tf.truncated_normal(shape,mean=mean,stddev=stddev)
    return tf.Variable(initial)


# 初始化合成后图片数字矩阵
result = initial_result((1,224,224,3),127.5,20)


# 构建VGG神经网络模型
class VGGNet:
    def __init__(self, data_dict):
        self.data_dict = data_dict

    # 获取卷积层卷积核
    def get_conv_filter(self, name)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值