npy文件
在网上可以下载到关于VGG-16的npy文件,这个是已经训练好的模型,文件保存的是训练好的相关参数,大约1.3亿个参数。npy文件,是以python的nupmy保存的文件,可以使用numpy来提取。
import numpy as np
data = np.load(r'D:\BaiduNetdiskDownload\vgg16.npy',allow_pickle=True,encoding='latin1')
dict_data = data.item()
print(dict_data.keys())
'''
效果:可以打印出每个卷积层和全连接的名字,通过其可以提取到对应的权重和偏置
dict_keys(['conv5_1', 'fc6', 'conv5_3',
'conv5_2', 'fc8', 'fc7', 'conv4_1',
'conv4_2', 'conv4_3', 'conv3_3',
'conv3_2', 'conv3_1', 'conv1_1',
'conv1_2', 'conv2_2', 'conv2_1'])
'''
构建网络架构
'''
构建网络架构200多行代码,主体为: 读取要转换的原图
构建模型类,
然后调用模型类
构建损失函数
梯度下降
开启会话
执行训练
保存图片
'''
import os
import numpy as np
import tensorflow as tf
from PIL import Image
import time
# 超参数
VGG_MEAN = [103.939, 116.778, 123.68]
path_Vgg16 = 'vgg16.npy' # vgg16.npy模型所在路径
output_dir = './run_style_trainsfer'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
num_steps = 201
learning_rate = 10
lambda_c = 1
lambda_s = 20
# 读取图片(其中做个两个技巧:
# 1,将不是rgb格式的图片转为rgb格式
# 2,重新设置图片的尺寸为:224,224,3)
def read_img(img_name):
img = Image.open(img_name)
# 因为使用的是vgg16模型,所以图片像素格式为:224,224,3 如果不是,需要事先处理
if img.mode != "RGB":
img = img.convert("RGB")
# 设置尺寸
img = img.resize((224, 224), Image.ANTIALIAS)
np_img = np.array(img) # 224.224.3
np_img = np.asarray([np_img],dtype=np.int32) # 1,224,224,3
return np_img
# 内容图像[[[]]]
content_val = read_img(input('请输入内容图片名:'))
# 风格图像
style_val = read_img(input('请输入风格图片名:'))
# 获得一个初始化的矩阵
def initial_result(shape,mean,stddev):
initial = tf.truncated_normal(shape,mean=mean,stddev=stddev)
return tf.Variable(initial)
# 初始化合成后图片数字矩阵
result = initial_result((1,224,224,3),127.5,20)
# 构建VGG神经网络模型
class VGGNet:
def __init__(self, data_dict):
self.data_dict = data_dict
# 获取卷积层卷积核
def get_conv_filter(self, name)