阅读笔记 Modality-specific and shared generative adversarial network for cross-modal retrieval

这一篇论文讲的是使用多模态来进行图片的检索, 通过文字检索出最好的图片,模型结构如下:
在这里插入图片描述

文章提出两个特征概念

  • modality-specific 模态独立特征
  • modality-shared 模态分享特征,也可以理解为共同特征

文章采用对抗训练框架, 在生成模型处

使用3个loss 进行训练:

  • semantic discrimination loss 用于保证语义的区分能力 ,要求模型提取的特征,对于类别的区分度高。要求模型提取的special特征和shared特征(文中是把两个提取的特征拼接成一个特征向量来进行预测),都能够有效的去辨别样本的类别。
  • contrastive loss 对于相同类别的两个不同的样本,要求模型提取对两个样本提取出来的spceial特征相近(包括两个模态), 模型提取出的两个样本的shared特征
  • large margin loss 保证模态独立特征和模态分享特征之间的差别度

在区分模型处

  • 判断给定样本的modality-shared特征, 来判断信息的模态是什么

这样可以 减少 提取的modality-shared特征的模态区别。也就是说对于每一个提取出来的共享特征,他对于模态之间的结果是变化不大的,无论他是从画面还是从文字提取出来的特征,它的共享特征是类似的,所以它的结果是相同的。

跨模态融合变压器用于多光谱目标检测是一种先进的目标检测方法。多光谱图像由不同波段的传感器捕获,每个波段提供了目标的不同特征信息。传统的目标检测算法往往局限于单一光谱波段,无法在多光谱图像中有效提取目标信息。而跨模态融合变压器能够将不同波段的光谱信息融合,并在融合后的特征上进行目标检测,从而提高目标检测的准确性和鲁棒性。 跨模态融合变压器结合了Transformer模型和跨模态融合方法。Transformer模型是一种基于自注意力机制的神经网络架构,能够有效地建模长距离依赖关系。它将目标的特征信息转化为一系列的注意力权重,然后利用这些权重来对不同波段的特征进行加权融合。这种融合方式可以将信息从一个波段传递到另一个波段,使得各个波段的特征能够共同影响目标检测结果。 跨模态融合变压器还引入了多尺度的注意力机制,以适应不同尺度目标的检测需求。它通过在特征提取的过程中引入多个不同大小的注意力窗口,来对不同尺度的目标进行建模。通过这种方式,跨模态融合变压器能够在多光谱图像中准确地检测到各种尺度的目标。 总之,跨模态融合变压器是一种能够融合不同波段特征并进行多光谱目标检测的先进方法。它的引入可以提高目标检测的准确性和鲁棒性,适用于各种需要从多光谱图像中提取目标信息的应用场景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值