跨模态ReID论文总结2:CNN提取特征论文(长期更新)

本文总结了跨模态人体重识别(ReID)领域的多个研究,主要关注通过两流网络提取RGB和IR图像特征,结合Sphere Softmax、Contrastive Loss等损失函数进行特征学习。各论文通过不同方法强化特征表示,如Hierarchical Discriminative Learning、HCML、pentaplet loss等,旨在缩小同类别的距离,扩大不同类别的距离,提升识别准确性。
摘要由CSDN通过智能技术生成

本部分占所有跨模态ReID的绝大部分论文的思路,基本思路是通过two-stream网络分别提取两个模态图像的特征,CNN前几层提取specifc feature ,后几层通过权重共享提取common feature ,在通过度量学习或者进一步的特征提取分别对specific feature和common feature进行进一步处理,最后通过ranking loss缩小同类别的距离,扩大不同类别的距离,通过identity loss进行分类任务。
1.HSME Hypersphere Manifold Embedding for Visible Thermal Person Re-Identification(2019 AAAI)
算法:
在这里插入图片描述
概括:
本文最大的特点是应用了经典softmax loss的一个变种Sphere Softmax loss,该softmax是从人脸领域中的coco loss迁移过来的,即首先将二维坐标系通过坐标变换转变为球面坐标,并且使得在球面上做分类任务时,仅与向量间的角度有关,与向量的模无关。整体框架中首先将RGB图像和IR图像通过two-stream通道输入给backbone分别提取特征,然后通过Sphere Softmax loss和triplet loss进行学习。

指标:
SYSM: RANK1:20.6、mAP:23.1
详细解读:
https://blog.csdn.net/qq_41967539/article/details/104185592
2.Hierarchical Discriminative Learning for Visible Thermal Person Re-Identification(2018 AAAI)
算法:
在这里插入图片描述
概括:
本文通过two-stream结构分别提取RGB图像和IR图像的特征,在训练时,选用Contrastive Loss弥补跨模态之间的差距,同时增强特征学习的模态不变性,用softmax loss和Cross entropy loss作为Identity loss 加强ID的识别能力,将训练好的feature map再作为输入进行度量学习(HCML),进一步将两个不同空间的模态的数据转化到同一个空间,一方面在每种模态内分别约束同一人的特征向量,另一方面区分不同人的两种不同模态转换后与模态特异性的度量,从而进一步加强对同一ID模态内和模态间特征的学习。

指标:
未用SYSM,RegDB:rank1:24.44、mAP:20.8
详细解读:
https://blog.csdn.net/qq_41967539/article/details/104210236
3.Enhancing the Discriminative Feature Learning for Visible-Thermal Cross-Modality Person(2019 ArXiv)
算法:
在这里插入图片描述
概括:
本文采用了two-stream结构分别提取RGB图像和IR图像的特征,在提取特征的过程中,采用跳链接将CNN模型的中间层特征融合进来,以增强person特征的无描述性和鲁棒性,并通过Triplet loss和softmax loss进行训练。
Fuse操作一般有级联、加、乘、相关操作等,其中前两种最为常见,级联实质是组合互补特征,不算融合,加是抽取互补特征,是一种直接融合的方式,两者比较的话有3点:1相加是级联的特例,2级联参数量多,3两个效果没有准确的优劣,但结果相差不大。

指标:
SYSM:rank1:36.94、mAP:40.77
详细解读:
https://blog.csdn.net/qq_41967539/article/details/104235761
4.HPILN a feature learning framework for cross-modality person re-identification(2019 IET)
算法:
在这里插入图片描述
概括:
本文首先是通过特征提取器提取相同数量的RGB图像和IR图像的特征,然后输入给特征嵌入模块,将这2PK个图像进行分组,得到the hardest pentaplet pair集合,本文最大的亮点就是将原始的triplet loss改变为pentaplet loss,即原始的triplet loss是尽可能将anchor与positive距离小于anchor与negative距离,但是本文提出的pentaplet loss除此之外还加入了的cross module问题,也就是说既要使得将anchor与positive距离小于anchor与negative距离,同样要使得将anchor与cross-module positive距离小于anchor与cross-module negative距离,除了将pentaplet loss作为ranking loss进行特征训练外,也选用了softmax作为identity loss辅助训练。
同时本文提到的难样本挖掘方法,即相似样本的最大距离<不相似的最小距

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值