逃离迷宫
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 25486 Accepted Submission(s): 6226
Problem Description
给定一个m × n (m行, n列)的迷宫,迷宫中有两个位置,gloria想从迷宫的一个位置走到另外一个位置,当然迷宫中有些地方是空地,gloria可以穿越,有些地方是障碍,她必须绕行,从迷宫的一个位置,只能走到与它相邻的4个位置中,当然在行走过程中,gloria不能走到迷宫外面去。令人头痛的是,gloria是个没什么方向感的人,因此,她在行走过程中,不能转太多弯了,否则她会晕倒的。我们假定给定的两个位置都是空地,初始时,gloria所面向的方向未定,她可以选择4个方向的任何一个出发,而不算成一次转弯。gloria能从一个位置走到另外一个位置吗?
Input
第1行为一个整数t (1 ≤ t ≤ 100),表示测试数据的个数,接下来为t组测试数据,每组测试数据中,
第1行为两个整数m, n (1 ≤ m, n ≤ 100),分别表示迷宫的行数和列数,接下来m行,每行包括n个字符,其中字符'.'表示该位置为空地,字符'*'表示该位置为障碍,输入数据中只有这两种字符,每组测试数据的最后一行为5个整数k, x 1, y 1, x 2, y 2 (1 ≤ k ≤ 10, 1 ≤ x 1, x 2 ≤ n, 1 ≤ y 1, y 2 ≤ m),其中k表示gloria最多能转的弯数,(x 1, y 1), (x 2, y 2)表示两个位置,其中x 1,x 2对应列,y 1, y 2对应行。
第1行为两个整数m, n (1 ≤ m, n ≤ 100),分别表示迷宫的行数和列数,接下来m行,每行包括n个字符,其中字符'.'表示该位置为空地,字符'*'表示该位置为障碍,输入数据中只有这两种字符,每组测试数据的最后一行为5个整数k, x 1, y 1, x 2, y 2 (1 ≤ k ≤ 10, 1 ≤ x 1, x 2 ≤ n, 1 ≤ y 1, y 2 ≤ m),其中k表示gloria最多能转的弯数,(x 1, y 1), (x 2, y 2)表示两个位置,其中x 1,x 2对应列,y 1, y 2对应行。
Output
每组测试数据对应为一行,若gloria能从一个位置走到另外一个位置,输出“yes”,否则输出“no”。
Sample Input
2 5 5 ...** *.**. ..... ..... *.... 1 1 1 1 3 5 5 ...** *.**. ..... ..... *.... 2 1 1 1 3
Sample Output
no yes
Source
解题思路:DFS
该题难在怎么判断转弯, 看大牛的博客发现其实挺简单的,膜拜!
dfs(x1, y1, -1);
传入-1作为起始的任意方向, 然后因为走的四个方向分别是i= 0到3。 dfs(newx, newy, i);
如果当前的i和之前dir方向不一致并且dir不等于初始任意方向-1的话那么该处就应该转弯。
还有一个难点就是每到达新一点记录该点是否要转弯 要的话re[newx][newy] = re[x][y] + 1;
否则 re[newx][newy] = re[x][y];但是如果从(x, y) 到达 (newx, newy)发现之前已经从另外道路走过来
所转的弯数更加少, 那么这种情况就应该直接剪掉, 不用从(x, y)走到(newx, newy), 代码注释中也有写。
代码:
#include <cmath>
#include <string>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LOCAL
using namespace std;
char Map[105][105]; //记录图
int re[105][105]; //记录在该点转动了多少角度
int f[4][2] = {{1,0},{-1,0},{0,1},{0,-1}}; //方向
int n, m, z, x1, y1, x2, y2;
int flag = 0;
void dfs(int x, int y, int dir)
{
if(flag == 1) return;
if(x == x2 && y == y2 && re[x][y] <= z) //到达终点,并且还没晕
{
flag = 1;
return;
}
for (int i = 0; i < 4; i++)
{
int newx = x + f[i][0];
int newy = y + f[i][1];
//下面这个if 为到newx newy 该点已经走别的路线到过并且比
//走(x,y)到这个点转弯数要小, 直接剪掉
if(re[newx][newy] < re[x][y])
continue;
else if(re[newx][newy] == re[x][y] && dir != -1 && dir != i )
continue;
//但如果以前到达这个点和现在到达这个点转弯数相同,则需要判断
//现在到达该点是否还需要转弯,如果不需要转弯,则可以做下去,如果
//还要转弯,那么现在到达这个点是需要的转弯数就比以前的多,所以剪掉
if(dir != -1 && dir != i) //判断转弯
{
re[newx][newy] = re[x][y] + 1;
if(re[x][y] > z) //判断是否晕了
return;
}
else
re[newx][newy] = re[x][y];
//判断边界
if(newx > 0 && newy > 0 && newx <= n && newy <= m && Map[newx][newy] != '*')
{
Map[newx][newy] = '*'; // 标记走过
dfs(newx, newy, i);
Map[newx][newy] = '.'; //还原标记
}
}
}
int main()
{
int T;
while (scanf("%d", &T) != EOF)
{
getchar();
while (T--)
{
scanf("%d%d", &n, &m);
getchar();
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
scanf("%c", &Map[i][j]);
getchar();
}
scanf("%d%d%d%d%d", &z, &y1, &x1, &y2, &x2);
for (int i = 0; i < 105; i++)
for (int j = 0; j < 105; j++)
re[i][j] = 100; //全都判断到达该点需要转100个弯,题目最多只能转10个。
re[x1][y1] = 0; //初始位置走的第一个方向不算转弯
flag = 0;
dfs(x1, y1, -1);
if(flag == 1) printf("yes\n");
else printf("no\n");
}
}
return 0;
}