DeepUbi:预测蛋白质泛素化位点的深度学习框架

文章介绍了DeepUbi,一个基于深度学习的预测器,用于识别蛋白质赖氨酸泛素化位点。通过10倍交叉验证,DeepUbi在大规模数据上的AUC达到0.9,准确度、敏感性和特异性均超过85%,MCC为0.78,优于传统浅层机器学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章背景

泛素泛素化是指泛素蛋白与赖氨酸(K)的靶蛋白结合,是真核生物中信号转导、细胞分裂和免疫反应等多种细胞功能的重要调节因子。然而,目前大多数预测目标位置的计算工具都是基于小规模数据和浅层机器学习算法。

结果
随着更多实验验证泛素化位点的出现,需要设计一个预测器来识别大规模蛋白质组数据中赖氨酸泛素化位点。这篇文章提出了一种基于卷积神经网络的深度学习预测器DeepUbi。从序列和物理化学性质上采用了四个不同的特征。在10倍交叉验证中,DeepUbi得到的AUC(接收机操作特征曲线下面积)为0.9,其准确性、敏感性和特异性均超过85%。综合指标MCC达到0.78。
结果表明,DeepUbi在基于大量数据的泛素化预测中具有良好的性能。

泛素最早是由Goldstein等人发现的。一九七五年[1]。泛素化是一种常见的真核细胞翻译后修饰(Ptm),是泛素与多种细胞蛋白的共价结合。2]。在泛素化过程中,泛素通过三步酶促反应附着在赖氨酸(K)残基上的底物上。有三种酶–泛素激活酶(E1s)、泛素结合酶(E2s)和泛素连接酶(E3s),它们一个接一个地起作用。3,4,5]。泛素化系统负责细胞分子功能的许多方面,如蛋白质定位、代谢、调节和降解。4,5,6,7]。它还参与细胞分裂和凋亡、信号转导、基因转录、DNA修复和复制、细胞内转运和病毒出芽等多种生物学过程的调控。4, 5]。有证据表明泛素化与细胞转化、免疫反应和炎症反应密切相关。8]。异常泛素化状态也涉及到许多疾病。例如,转移抑制因子1的泛素化是由Skp 1-cullin1-F盒β-转导蛋白介导的,对调节乳腺癌和前列腺癌细胞的增殖和迁移至关重要。9].
由于泛素化的作用,对泛素化位点的准确预测显得尤为重要。传统的实验方法费时费力,因此,作为一种补充方法,计算方法是必要的。10, 11]。近年来,各种机器学习方法被应用于蛋白质泛素化位点的预测。董和何[12]利用支持向量机(SVM)开发了泛素化位点预测器UbiPred,从已发表的氨基酸指数中选取了31个信息丰富的物理化学特征。13]。Radivojac[14使用随机森林算法开发了一个以586个序列属性作为输入特征向量的预测器UbPred。赵[15]对表决机制采取了一种整体办法。李[16]设计了UbSite,它使用有效的径向基函数(RBF)核来识别泛素化位点。陈17]利用k-间隔氨基酸对(CKSAAP)的组成,提出了一个预测因子CKSAAP_UbSite。蔡[18]提出了一种利用最近邻算法的预测器。陈19]提出了一种新的工具,UbiProber,它是为一般和特定物种设计的。陈20]通过集成四种不同类型的预测变量来开发hCKSAAP_UbSite。邱[21]使用支持向量机开发了iubq-lys。蔡和江22使用多种机器学习算法预测泛素化位点。王[23]使用进化算法(ESA)设计了一个工具,ESA-UbiSite。此外,还有许多其他预测因素,如UbiSite[24UbiBrowser[25]、鲁比[26,WPAAN分类器[27,MDDLogoClusterSVM模型[28]和非典范路径网络[29]。
虽然泛素化位点预测器已经开发出来,但仍然存在局限性。如上所述,现有的泛素化位点预测的计算方法是浅层机器学习方法,其数据集较小。然而,大量的生物医学数据已经积累,浅层机器学习算法不能很好地处理大数据。在本研究中,我们提出了一个赖氨酸泛素化预测器,DeepUbi,它使用了一个大型数据集上的深度学习框架。

交叉验证性能
如表所示。为了衡量预测器的质量,我们考虑了如何客观地得出预测值。一般采用三种不同的检验方法来评

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络、智能、规模和集聚方向发展,各地应找准自身比较优势,实现差异发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值