一、背景介绍
1、泛素化是最主要的转录后修饰之一,它调节着几乎所有类型的细胞过程,泛素化酶级联将泛素分子附着在特定的亚层上,从而诱导底物降解或活性变化。
2、去泛素化是指通过去泛素化酶(deubiquitination enzyme, DUBs)从底物上去除附着的泛素分子。
3、人类基因组中约有100个DUB,其中泛素特异性蛋白酶(USPs)是最大的DUB亚家族,拥有近60个成员。
4、越来越多的证据显示USPs在癌症中起着关键作用。
如:USP7(也称为HAUSP)可以去泛素化并稳定肿瘤抑制因子p53及其ubi奎汀连接酶MDM2。
USP9X可以通过去泛素化参与Hippo通路的肿瘤抑制因子LATS2来抑制肿瘤原,也可以通过稳定β-catenin来促进细胞生长。
USP10已被证明在不同的癌症中去泛素化致癌基因FLT3和肿瘤抑制因子PTEN。
5、取决于底物的作用(致癌或抑制),USPs对癌症有各种各样的影响。
.........
二、结果解读
1、多组学数据分析揭示了USPs的泛癌症影响模式
首先,统计在泛癌中USPs基因突变的频率,fig1a就是统计了在pan-caner的snv突变中发生不同突变频数的统计。fig1b将统计的是单个cancer的snv突变中发生突变占所有样本的比例
接着,在pan-cancer中分析对USPs基因进行差异分析+预后分析,方形细胞颜色表示肿瘤与正常组织之间的log2转化差异倍数(Log2FC),白色方块表示无显著变化,圆形颜色表示USPs对预后的影响,其中粉色和蓝色分别表示预后效果良好和不利(保护因子/风险因子),无圆形表示预后无显著影响。左边的条形图标注了肿瘤组织中USPs上调或下调的癌症类型的比例,红色或绿色星号表示上调或下调的比例>25%。底部柱状图表示有利和不利usp的比例,其中r.FP = rFP-USP / rFP-random, r.UFP = rUFP-USP / rUFP-random, rFP-USP和rUFP-USP代表预后有利和预后不利usp在所有usp中的比例,rFP-random和rUFP-random代表预后有利和预后不利基因在2000个随机选择的基因中所占比例有利和预后不利基因(fig1C)。
接着通过USPs mRNA表达量与同一数据集中匹配蛋白表达量(黄色曲线)或随机抽样蛋白表达量(绿色曲线)之间的spearman相关系数分布(其实就是mRNA-protein相关性分析的分布情况)。说明在基因和蛋白的表达的一致性(fig1d)
最后在肝癌的蛋白表达数据中以热图的形式展示USPs表达(Fig1e)
2、USPs潜在的生物学功能
首先在每种癌症类型中,使用WGCNA R包计算每个USPs与其他基因之间的相关系数,并根据绝对值对它们进行排序。对于每个USP,使用信号通路影响分析(SPIA)算法来对显著影响的前500个基因进行通路富集分析。统计了富集到的通路,接着通过热图展示相关性最大的top通路,其中热图的颜色为该通路中包含显著富集到USPs的数量
通过圈图展示top20个通路和USPs的相关性
3、通过USPs与底物的相互作用(USIs)解释USPs对cancer的作用
文章使用去泛素相关关键词检索PubMed中的相关文献,基于pubmed.mineR包提取已经被实验证实的DSIs。还从另外两个资源中收集已经被实验证实的DSIs。这些DSIs共包含67个dub和264个底物的组成的389对互作关系。实验证实的USPs-底物互作网络,USPs底物的富集分析,MSPIs(基于质谱的DUBs蛋白质相互作用)和DSIs(DUB和底物之间的相互作用),对预后产生影响的USP底物,最后进行相应的可视化。
4、先建DSI预测模型可以识别出更多与癌症相关的USIs
为识别出更多的USPs潜在底物,构建出一个新的DSI预测模型:以基准DSIs(389对)作为预测模型的阳性数据集,基于mersen - twister随机数生成器从93个DUBs和HPM的 17294个有效蛋白中随机选择一个DUB和一个底物(不包括阳性DSIs的蛋白对),生成3890对蛋白质对的阴性参考数据集。然后计算包括表达、功能、网络和结构在内的多维关联特征,用以描述阳性和阴性数据集中的蛋白质对。最后,通过合成的少数过采样技术生成一个平衡的数据集,并使用支持向量机(SVM)训练和测试分类器。此外,还使用KNN算法预测样本中缺失值,并在两套独立数据集中验证模型性能。实验结果表明,DUBs及其底物比随机情况在蛋白表达水平、基于基因本体论(GO)的功能、蛋白相互作用网络和结构域上具有更强关联性。预测模型流程,预测DSI和随机DRI的比较,独立数据集中验证的结果
这个模型被进一步应用于识别更多与癌症相关的USIs:74,767对候选蛋白对中,预测概率大于0.8的有8736对。综合top500预测结果和USIs基准,构建高置信度USI网络。除已报道的底物,还发现一些未知的癌症相关底物,如USP8的ERBB2和YAP1,USP10的NFKB1和MDM4,以及USP22的SRC 。
与已知的底物相比,发现许多onco-driver底物,特别是那些具有致癌潜力的底物(图5b)。基于这些结果,这些底物的去泛素化可能影响癌症的发展和进展。此外,研究者还通过去泛素化实验,验证对三个代表性USPs (USP8、USP10和USP22)的预测结果。预测的USI网络可以为未知的USIs提供新的探索思路。预测的USI结果,以及对三个USPs的实验验证如图5所示。
5、通过USI网络定义具有去泛素化异质性并构建预后相关的癌症亚型
根据48个USPs及其820个底物在高可信USI网络中的表达数据ConsensusClusterPlus一致性聚类构建分子亚型,并查看与预后的关系
为确定去泛素化异质性背后的分子差异,进一步识别聚类间差异表达的底物。对于大多数癌症类型,包括LIHC、LUAD、LGG和胃腺癌(STAD),大多数底物在预后不良的簇中上调。
去泛素化功能的异质性主要集中在一系列通路上,如细胞周期通路和MAPK信号通路中。
在不同癌型中不同类别间的预后差异,USP上下调比较,差异表达底物富集分析及不同癌型间富集通路的重叠
6、癌症类型依赖的USPs和底物协同作用导致亚型间的预后异质性
不同肿瘤,不同数据集差异分析+预后分析,USPs与底物之间关系分布
从分析的角度,本文不是一篇灌水的文章,从USPs基因集出发,通过文章检索,基于已有的实验结果,并构建DSI预测模型,预测更多的USPs底物,同时构建分子亚型进一步解析USPs和底物之间的关系