深度学习毕业设计基于YoloV3疲劳驾驶及违规行为检测系统

收藏关注不迷路!!

🌟文末获取源码+数据库🌟

感兴趣的可以先收藏起来,还有大家在毕设选题(免费咨询指导选题),项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人


一、项目介绍

基于YoloV3的疲劳驾驶及违规行为检测系统是一种利用先进的目标检测算法来实现对驾驶员疲劳状态及交通违规行为实时监测的系统。以下是对该系统的详细介绍:

一、系统背景与意义
随着交通运输业的快速发展,道路安全问题日益受到人们的关注。疲劳驾驶作为一种常见的交通违规行为,不仅会导致驾驶员反应速度和判断能力下降,增加事故风险,还会对驾驶员的身体健康造成不良影响。因此,开发一套能够实时监测驾驶员疲劳状态并检测交通违规行为的系统具有重要的现实意义。
二、系统核心算法
该系统采用YoloV3(You Only Look Once version 3)算法作为核心,这是一种先进的目标检测算法,具有高效性和实时性的特点。YoloV3采用Darknet-53作为网络结构,通过多尺度特征融合的方式,能够在不同尺度的特征图上检测不同大小的目标,这使得YoloV3在检测小目标时具有更高的准确率。

二、功能介绍

疲劳驾驶检测:
系统通过实时检测驾驶员的面部特征来判断其疲劳状态。具体来说,系统首先利用YoloV3算法进行人脸检测,并提取出面部特征点(如眼睛、嘴巴等)。
然后,系统通过计算这些特征点的变化率(如眼睛闭合时间占比、嘴巴张合频率等)来判断驾驶员是否处于疲劳状态。
为了提高检测的准确性,系统还采用了机器学习算法(如支持向量机SVM)对驾驶员的疲劳特征进行分类。通过对大量带有标签的数据进行训练,系统能够学习到驾驶员疲劳状态的特征表示,并在实际应用中准确识别出疲劳驾驶行为。
交通违规行为检测:
除了疲劳驾驶检测外,系统还能够检测其他交通违规行为,如闯红灯、逆行、超速等。
这些违规行为的检测主要依赖于YoloV3算法对车辆和交通信号灯的识别能力。通过对道路监控视频进行实时分析,系统能够准确识别出车辆的位置、速度和行驶方向等信息,并结合交通信号灯的状态来判断车辆是否存在违规行为。
对于检测到的违规行为,系统会及时生成警报信息并通知相关部门进行处理。同时,系统还可以记录违规车辆的信息和违规行为发生的时间、地点等详细信息,为后续的交通管理提供有力支持。

三、核心代码

部分代码:

# Copyright © 2020, Yingping Liang. All Rights Reserved.

# Copyright Notice
# Yingping Liang copyrights this specification.
# No part of this specification may be reproduced in any form or means,
# without the prior written consent of Yingping Liang.


# Disclaimer
# This specification is preliminary and is subject to change at any time without notice.
# Yingping Liang assumes no responsibility for any errors contained herein.

import sys
import argparse
import qdarkstyle
from PyQt5 import QtCore, QtWidgets, QtGui
from PyQt5.QtWidgets import QApplication
from UILib.MainWindow import MainWindow


def main(opt):
    '''
    启动PyQt5程序,打开GUI界面
    '''
    app = QApplication(sys.argv)
    splash = QtWidgets.QSplashScreen(QtGui.QPixmap("web/logo.png"))
    splash.showMessage("加载... 0%", QtCore.Qt.AlignHCenter, QtCore.Qt.black)
    splash.show()                           # 显示启动界面
    QtWidgets.qApp.processEvents()          # 处理主进程事件
    main_window = MainWindow(opt)
    main_window.load_data(splash)                # 加载数据
    main_window.showFullScreen()
    app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5())
    main_window.show()
    sys.exit(app.exec_())


if __name__ == '__main__':

    parser = argparse.ArgumentParser()
    parser.add_argument('--model_type', type=str,
                        default='torch', help='model framework.')
    parser.add_argument('--tracker', type=str,
                        default='deep_sort', help='tracker framework.')
    opt = parser.parse_args()

    main(opt)


四、效果图

请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述
请添加图片描述

五、文章目录

目 录
1 绪 论 1
1.1 选题的背景 1
1.2 国内外研究现状 1
1.3 选题的目的和意义 1
1.4主要研究内容 3
2 相关技术介绍 5
2.1 卷积神经网络 5
2.2 系统开发相关技术 9
3 数据获取及预处理 14
3.1 数据集的获取及简介 14
3.2 数据预处理 17
4 模型训练与评估 18
4.1 模型选择 14
3.2 模型训练 17
4.3 模型评估 17
5 模型优化 18
5.1 优化器选择 14
5.2 效果对比分析 17
6 系统部署 19
6.1 需求分析 14
6.2 系统设计与实现 17
6.3 系统测试 17
7 总结与展望 29
7.1 总结 29
7.2 展望 29
参考文献 30
致 谢 33

六 、源码获取

下方名片联系我即可!!


大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

毕业程序员

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值