【精选】基于Gold-YOLO改进YOLOv8的智能交通系统设计 车辆未礼让行人检测平台、目标检测与分类算法开发 未礼让行人行为识别、深度学习目标检测模型开发 交通规则违章识别

博主介绍:
    ✌我是阿龙,一名专注于Java技术领域的程序员,全网拥有10W+粉丝。作为CSDN特邀作者、博客专家、新星计划导师,我在计算机毕业设计开发方面积累了丰富的经验。同时,我也是掘金、华为云、阿里云、InfoQ等平台的优质作者。通过长期分享和实战指导,我致力于帮助更多学生完成毕业项目和技术提升。

技术范围:
    我熟悉的技术领域涵盖SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app、大数据、物联网、机器学习等方面的设计与开发。如果你有任何技术难题,我都乐意与你分享解决方案。

 为什么选择阅读我:

我是程序阿龙,专注于软件开发,拥有丰富的编程能力和实战经验。在过去的几年里,我辅导了上千名学生,帮助他们顺利完成毕业项目,同时我的技术分享也吸引了超过50W+的粉丝。我是CSDN特邀作者、博客专家、新星计划导师,并在Java领域内获得了多项荣誉,如博客之星。我的作品也被掘金、华为云、阿里云、InfoQ等多个平台推荐,成为各大平台的优质作者。

🍅获取源码请在文末联系我🍅

目录:

一、详细操作演示视频       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!

系统实现界面:

研究背景与意义:

YOLOv8 概述:

核心检测代码如下:

安装与环境要求

为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!

     博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。

源码获取

文章下方名片联系我即可~大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻精彩专栏推荐订阅:在下方专栏👇🏻

一、详细操作演示视频
       在文章的尾声,您会发现一张电子名片👤,欢迎通过名片上的联系方式与我取得联系,以获取更多关于项目演示的详尽视频内容。视频将帮助您全面理解项目的关键点和操作流程。期待与您的进一步交流!

系统实现界面:

研究背景与意义:

     随着交通工具的普及和道路交通量的不断增加,交通安全问题日益严峻,尤其是车辆未礼让行人这一问题,频繁发生的交通事故已对行人的生命安全构成了极大威胁。车辆未礼让行人不仅是导致交通事故的主要原因之一,还加剧了交通拥堵和道路通行效率的下降。因此,开发一种高效、准确的车辆未礼让行人检测系统,能够实时监测交通环境中的车辆与行人的互动,及时发现和预警未礼让行为,具有重要的现实意义。这一系统的实施不仅有助于提高交通安全,减少事故发生,也能够优化交通流量,提升道路通行效率,为智能交通系统的建设提供技术支持,推动智能交通的快速发展。随着深度学习技术在目标检测领域的突破,YOLO(You Only Look Once)算法作为一种快速、准确的目标检测工具,已广泛应用于多种交通监控场景。然而,传统YOLO算法在处理小目标、复杂场景以及目标遮挡等情况下存在一定的局限性,因此,本研究通过改进YOLOv8算法并融合Gold-YOLO的思想,旨在提升车辆未礼让行人检测系统的准确性与鲁棒性,从而有效提高交通安全和道路通行效率。

YOLOv8 概述:

   YOLOv8(You Only Look Once version 8)是YOLO系列目标检测算法的最新版本,继承了YOLO系列的高效性和实时性,同时在精度和鲁棒性方面进行了显著优化。YOLOv8采用了先进的深度学习技术和高效的神经网络架构,结合了卷积神经网络(CNN)和 Transformer 技术,以进一步提升模型在处理复杂场景时的表现。与前几代YOLO模型相比,YOLOv8在小目标检测、遮挡目标识别和多尺度目标的处理能力上有了大幅提升,同时通过引入更精细的网络层和优化策略,能够在保证高帧率的同时提高检测的准确性。此外,YOLOv8还采用了新的目标检测策略和改进的损失函数,使得其在边界框回归和分类精度上均表现出色,尤其在交通监控和智能安防等领域展现出了强大的应用潜力。因此,YOLOv8不仅在学术研究中具有重要价值,也为实际应用中的目标检测任务提供了高效的解决方案。

   ultralytics 包加载YOLOv8模型,进行图像推理,并输出检测结果。假设你已经安装了 ultralytics,如果没有安装,可以通过以下命令进行安装:

核心检测代码如下:
 

import cv2
import torch
from ultralytics import YOLO
import matplotlib.pyplot as plt

# 1. 加载YOLOv8模型(使用预训练模型或你自己训练的模型)
model = YOLO("yolov8n.pt")  # 这里可以替换成自己的训练好的模型路径

# 2. 加载并读取输入图片
image_path = "data/images/sample_image.jpg"  # 替换为你的图像路径
img = cv2.imread(image_path)  # 使用 OpenCV 读取图像

# 3. 进行推理
results = model(img)  # 执行推理

# 4. 获取预测结果(边界框、标签、置信度等)
# results.pred 维度为 [N, 6]:N 为预测的框数,6分别为 [x1, y1, x2, y2, conf, class]
boxes = results.pred[0][:, :4].cpu().numpy()  # 获取边界框坐标
labels = results.pred[0][:, 5].cpu().numpy()  # 获取预测类别标签
confidences = results.pred[0][:, 4].cpu().numpy()  # 获取置信度

# 5. 可视化检测结果
for i, box in enumerate(boxes):
    x1, y1, x2, y2 = box
    label = int(labels[i])  # 类别标签
    confidence = confidences[i]  # 置信度
    
    # 绘制边界框
    color = (0, 255, 0)  # 边界框颜色为绿色
    thickness = 2
    img = cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, thickness)

    # 添加类别标签和置信度
    text = f"{model.names[label]} {confidence:.2f}"  # 类别名称 + 置信度
    font = cv2.FONT_HERSHEY_SIMPLEX
    cv2.putText(img, text, (int(x1), int(y1)-10), font, 0.5, color, 2)

# 6. 使用OpenCV显示检测结果
cv2.imshow("YOLOv8 Detection Result", img)
cv2.waitKey(0)  # 等待键盘输入
cv2.destroyAllWindows()  # 关闭所有OpenCV窗口

# 7. 保存检测结果图像
output_path = "output_image.jpg"  # 结果保存路径
cv2.imwrite(output_path, img)

# 如果你想显示图片并保存为Matplotlib图表,可以使用以下代码
plt.figure(figsize=(10, 10))
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))  # 将BGR转为RGB
plt.axis('off')  # 不显示坐标轴
plt.show()
  • 加载YOLOv8模型

    • model = YOLO("yolov8n.pt") 加载了YOLOv8的预训练模型(yolov8n.pt 是YOLOv8中的一个小型模型,如果你有自己的训练模型,可以将路径替换为你自己的模型文件)。
  • 读取图像

    • cv2.imread(image_path) 使用OpenCV读取图像文件。
  • 执行推理

    • results = model(img) 将图像传递给YOLOv8模型进行推理,results 是YOLOv8返回的一个结果对象。
  • 获取检测结果

    • results.pred[0][:, :4] 提取边界框坐标(x1, y1, x2, y2)。
    • results.pred[0][:, 5] 提取每个框的类别标签(label)。
    • results.pred[0][:, 4] 提取每个框的置信度(confidence)。
  • 后处理与可视化

    • 使用OpenCV绘制边界框和标签(包括类别名称和置信度)。
    • cv2.rectangle() 用于绘制矩形框。
    • cv2.putText() 用于添加类别名称和置信度文本。
  • 显示与保存检测结果

    • cv2.imshow() 使用OpenCV展示图像,cv2.waitKey(0) 等待用户按键关闭窗口。
    • cv2.imwrite() 保存处理后的图像。
  • Matplotlib显示图像

    • 使用 matplotlib 显示图像,并将OpenCV的BGR图像转换为RGB格式。
    • 安装与环境要求

    • ultralytics 是YOLOv8的核心库,需要通过 pip install ultralytics 安装。
    • 如果使用OpenCV显示和保存图像,需要安装 opencv-python
  • pip install opencv-python
    

为什么选择我(我可以给你的定制项目推荐核心功能,一对一推荐)实现定制!!!
     博主提供的项目均为博主自己收集和开发的!所有的源码都经由博主检验过,能过正常启动并且功能都没有问题!同学们拿到后就能使用!且博主自身就是高级开发,可以将所有的代码都清晰讲解出来。

  • 源码获取

    文章下方名片联系我即可~
    大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻
    精彩专栏推荐订阅:在下方专栏👇🏻

智慧交通基于YOLOv8行人车辆检测计数系统源码(部署教程+训练好的模型+各项评估指标曲线).zip 平均准确率:0.91 类别:person、truck、car、bus、traffic light 【资源介绍】 1、ultralytics-main ultralytics-main为YOLOv8源代码,里面涵盖基于yolov8分类目标检测额、姿态估计、图像分割四部分代码,我们使用的是detect部分,也就是目标检测代码 2、搭建环境 安装anaconda 和 pycharm windows系统、mac系统、Linux系统都适配 在anaconda中新建一个新的envs虚拟空间(可以参考博客来),命令窗口执行:conda create -n YOLOv8 python==3.8 创建完YOLOv8-GUI虚拟空间后,命令窗口执行:source activate YOLOv8 激活虚拟空间 然后就在YOLOv8虚拟空间内安装requirements.txt中的所有安装包,命令窗口执行:pip install -r requirements.txt 使用清华源安装更快 3、训练模型过程 进入到\ultralytics-main\ultralytics\yolo\v8\detect\文件夹下,datasets即为我们需要准备好的数据集,训练其他模型同理。 data文件夹下的bicycle.yaml文件为数据集配置文件,该文件为本人训练自行车检测模型时创建,训练其他模型,可自行创建。博文有介绍https://blog.csdn.net/DeepLearning_?spm=1011.2415.3001.5343 train.py中238行,修改为data = cfg.data or './bicycle.yaml' # or yolo.ClassificationDataset("mnist") 237行修改自己使用的预训练模型 若自己有显卡,修改239行,如我有四张显卡,即改成args = dict(model=model, data=data, device=”0,1,2,3“) 以上配置完成后运行train.py开始训练模型,训练完毕后会在runs/detect/文件夹下生成train*文件夹,里面包含模型和评估指标等 4、推理测试 训练好模型,打开predict.py,修改87行,model = cfg.model or 'yolov8n.pt',把yolov8n.pt换成我们刚才训练完生成的模型路径(在\ultralytics-main\ultralytics\yolo\v8\detect\runs\detect文件夹下),待测试的图片或者视频存放于ultralytics\ultralytics\assets文件夹, 运行predict.py即可,检测结果会在runs/detect/train文件夹下生成。
### 如何优化YOLOv8进行更好的行人检测 #### 数据增强技术的应用 为了提高YOLOv8行人检测上的性能,可以采用更加复杂的数据增强方式来扩充数据集。例如随机裁剪、颜色抖动、水平翻转等操作可以帮助模型学习到更多样化的样本特征[^2]。 #### 特征金字塔网络(FPN) 引入特征金字塔网络有助于改善小尺度行人检测效果。通过融合不同层次的特征图,可以使网络更好地捕捉多尺度信息,从而提升对于远处或遮挡情况下行人识别准确性[^1]。 #### 高质量标注难例挖掘 确保训练集中有足够的高质量标记图像,并定期更新以反映最新的场景变化;同时利用在线硬负采样机制自动筛选出难以被正确分类的例子作为额外的学习材料加入到下一轮迭代中去[^4]。 #### 调整损失函数权重 适当调整边界框回归项其他任务之间的相对重要程度可以通过改变它们各自对应的系数实现。这样做可以让模型更加关注于解决特定类型的错误,比如位置偏移较大的预测结果,进而间接促进整体性能指标的进步。 ```python import ultralytics.yolo.engine.model.YOLO as yolo_model from pathlib import Path def optimize_yolov8_for_pedestrian_detection(model_path: str, dataset_dir: str): model = yolo_model(Path(model_path)) # Apply advanced data augmentation techniques during training phase. train_loader = prepare_data_with_augmentation(dataset_dir) # Integrate FPN into the backbone architecture of YOLOv8 to enhance multi-scale feature extraction capabilities. integrate_fpn_to_backbone(model.backbone) # Implement online hard negative mining strategy within custom loss function definition. criterion = CustomLossWithHardNegativeMining() optimizer = torch.optim.AdamW(params=model.parameters(), lr=0.001) epochs = 50 for epoch in range(epochs): adjust_loss_weights(epoch) # Adjust weights between classification and localization losses dynamically based on current stage. for batch_idx, (images, targets) in enumerate(train_loader): outputs = model(images) total_loss = compute_custom_loss(outputs, targets, criterion=criterion) optimizer.zero_grad() total_loss.backward() optimizer.step() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员阿龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值