机器学习中的算法-贝叶斯算法

本文深入浅出地介绍了贝叶斯算法,包括贝叶斯思想的起源、解决问题的核心、现实世界的应用,并通过拼写纠错和垃圾邮件过滤的实例详细解释了其工作原理和计算过程。
摘要由CSDN通过智能技术生成
原创文章,如需转载请保留出处
本博客为唐宇迪老师python数据分析与机器学习实战课程学习笔记

一.贝叶斯算法概述
1.1贝叶斯简介:

  • 贝叶斯(约1701-1761)Thomas Bayes,英国数学家
  • 贝叶斯方法源于他生前为了解决一个“逆概”问题写的一篇文章

1.2贝叶斯要解决的问题

  • 正向概率:假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率是多大
  • 逆向概率:如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测

1.3 为什么使用贝叶斯

  • 现实世界本身就是不确定的,人类的观察能力是有局限性的
  • 我们日常所观察到的只是事物表面上的结果,因此我们需要提供一个猜测

1.4 举个例子
假设男生占60%,女生占40%。男生总是穿长裤,女生则一半穿长裤一半穿裙子

  • 正向概率:随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大?
  • 逆向概率:迎面走来一个穿长裤的学生,你只能看得见他(她)穿的是否长裤,而无法确定他(她)的性别,你能推断出他(她)是女生的概率是多大吗?

二.贝叶斯推导实例
假设学校里面人的总数是U个
穿长裤的(男生):U * P(Boy)* P(Pants | Boy)

  • P(Boy):是男生的概率=60%
  • P(Pants | Boy):是条件概率,即在Boy这个条件下穿长裤的概率是多大,这里是100%,因为所有男生都穿长裤
    穿长裤的(女生):U * P(Girl)* P(Pants | Girl)

求解:穿长裤的人里面有多少女生?

  • 穿长裤总数:U * P(Boy) * P(Pants | Boy) + U * P(Girl)* P(Pants | Girl)
  • P(Girl | Pants) = U * P(Girl) * P(Pants | Girl) / 穿长裤总数
    U * P(Girl)* P(Pants | Girl) / [ U * P(Boy)* P(Pants | Boy) + U * P(Girl)* P(Pants | Girl)]

化简:
P(Girl | Pant

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值