原创文章,如需转载请保留出处
本博客为唐宇迪老师python数据分析与机器学习实战课程学习笔记
一.贝叶斯算法概述
1.1贝叶斯简介:
- 贝叶斯(约1701-1761)Thomas Bayes,英国数学家
- 贝叶斯方法源于他生前为了解决一个“逆概”问题写的一篇文章
1.2贝叶斯要解决的问题
- 正向概率:假设袋子里面有N个白球,M个黑球,你伸手进去摸一把,摸出黑球的概率是多大
- 逆向概率:如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(或好几个)球,观察这些取出来的球的颜色之后,那么我们可以就此对袋子里面的黑白球的比例作出什么样的推测
1.3 为什么使用贝叶斯
- 现实世界本身就是不确定的,人类的观察能力是有局限性的
- 我们日常所观察到的只是事物表面上的结果,因此我们需要提供一个猜测
1.4 举个例子
假设男生占60%,女生占40%。男生总是穿长裤,女生则一半穿长裤一半穿裙子
- 正向概率:随机选取一个学生,他(她)穿长裤的概率和穿裙子的概率是多大?
- 逆向概率:迎面走来一个穿长裤的学生,你只能看得见他(她)穿的是否长裤,而无法确定他(她)的性别,你能推断出他(她)是女生的概率是多大吗?
二.贝叶斯推导实例
假设学校里面人的总数是U个
穿长裤的(男生):U * P(Boy)* P(Pants | Boy)
- P(Boy):是男生的概率=60%
- P(Pants | Boy):是条件概率,即在Boy这个条件下穿长裤的概率是多大,这里是100%,因为所有男生都穿长裤
穿长裤的(女生):U * P(Girl)* P(Pants | Girl)
求解:穿长裤的人里面有多少女生?
- 穿长裤总数:U * P(Boy) * P(Pants | Boy) + U * P(Girl)* P(Pants | Girl)
- P(Girl | Pants) = U * P(Girl) * P(Pants | Girl) / 穿长裤总数
U * P(Girl)* P(Pants | Girl) / [ U * P(Boy)* P(Pants | Boy) + U * P(Girl)* P(Pants | Girl)]
化简:
P(Girl | Pant