机器学习算法之贝叶斯

本文详细介绍了机器学习中的贝叶斯算法,包括简单实例、朴素贝叶斯和高斯贝叶斯的原理及应用。通过实例展示了如何使用Python的sklearn库进行数据预处理和模型训练,强调了高斯贝叶斯的工作过程。

目录



一、简单实例

import numpy as np
X=np.array([[0,1,0,1],#模拟天气特征
          [1,1,1,0],
          [0,1,1,0],
          [0,0,0,1],
          [0,1,1,0],
          [0,1,0,1],
          [1,0,0,1]])
y=np.array([0,1,1,0,1,0,0])
counts={
   
   }#计算不同分类每个特征为1的数量
for label in np.unique(y):
    counts[label]=X[y==label].sum(axis=0)
    print("feature counts:\n{}".format(counts))

显示结果
请添加图片描述

import numpy as np
X=np.array([[0,1,0,1],#模拟天气特征
          [1,1,1,0],
          [0,1,1,0],
          [0,0,0,1],
          [0,1,1,0],
          [0,1,0,1],
          [1,0,0,1]])
y=np.array([0,1,1,0,1,0,0])
counts={
   
   }#计算不同分类每个特征为1的数量
for label in np.un
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值