目录
一、简单实例
import numpy as np
X=np.array([[0,1,0,1],#模拟天气特征
[1,1,1,0],
[0,1,1,0],
[0,0,0,1],
[0,1,1,0],
[0,1,0,1],
[1,0,0,1]])
y=np.array([0,1,1,0,1,0,0])
counts={
}#计算不同分类每个特征为1的数量
for label in np.unique(y):
counts[label]=X[y==label].sum(axis=0)
print("feature counts:\n{}".format(counts))
显示结果

import numpy as np
X=np.array([[0,1,0,1],#模拟天气特征
[1,1,1,0],
[0,1,1,0],
[0,0,0,1],
[0,1,1,0],
[0,1,0,1],
[1,0,0,1]])
y=np.array([0,1,1,0,1,0,0])
counts={
}#计算不同分类每个特征为1的数量
for label in np.un

本文详细介绍了机器学习中的贝叶斯算法,包括简单实例、朴素贝叶斯和高斯贝叶斯的原理及应用。通过实例展示了如何使用Python的sklearn库进行数据预处理和模型训练,强调了高斯贝叶斯的工作过程。
最低0.47元/天 解锁文章
3900

被折叠的 条评论
为什么被折叠?



