数据挖掘的广告作弊行为分析

反作弊方法
这里写图片描述
反作弊方法

1 基于异常值分析的方法
1.1 基于统计学的异常值检测
含义:数据集若服从正态分布,与均值之间的偏差达到或超过3倍标准差,可以对点击率,转化率,对话时间差进行分析
缺点:只能检测单个变量值,每次检测只能局限于单个指标
1.2 基于距离和密度的异常值检测
优点:可以结合多指标进行分析
1.3 基于偏差的异常值检测
概念:通过检查数据的主要特征来确定异常对象。如果一个对象的特征过分偏离给定的数据特征,则是异常对象
主要方法:
1.OLAP数据立体方法:利用在大规模的多维数据中采用数据立方体确定反常区域,如果一个立方体的单元值明显不同于根据统计模型得到的期望值,该单元被认为是孤立点
2.点击流分析:发现不规则的点击过程,可以作为点击欺诈的怀疑对象
2 基于规则的识别方法
2.1 同一IP的用户单日点击次数超过多少即可视为作弊
2.2 某个广告位的点击率突然大幅增加可能存在作弊
3 基于分类的方法
概念:根据数据挖掘分类算法对历史数据进行模拟,通过构建分类器来对点击行为进行预测
缺点: 1.需要事先对历史点击行为进行分类,即标注出作弊的数据 2.对数据的完整性和质量要求较高
网盟作弊分析决策树示意图

名词解释
跳出率:
1.定义:指进入某一网站之后不再继续浏览,而直接离开网站的访客比例
2.意义:跳出率越高,网站的粘性就越低
二跳:
1.定义:当网站页面展开后,用户在页面上产生的首次点击被称为“二跳”,二跳的次数即为二跳量,二跳率=二跳量/浏览量。
2.意义:二跳率越高,网站的粘性越高
八月 19, 2015.


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值