营销反作弊异常行为分析模型:方法、模型实现与效果评估(二)反薅羊毛,反欺诈算法,附带python实现代码

营销反欺诈是保障平台安全与用户体验的重要环节。随着在线广告、点击率、交易量等数据的增多,异常行为检测成为识别潜在欺诈行为的关键。常见的异常行为包括虚假点击、恶意刷单、刷量等,这些行为可能导致营销资源浪费、平台信誉受损,甚至造成财务损失。为了高效识别这些异常行为,本文将介绍几种常见的异常检测方法,并结合实际代码与效果评估,帮助读者在反欺诈系统中实现异常行为的识别。

1. 基于统计的方法
统计方法主要通过对数据的统计特性(如均值、标准差、分位数)进行分析,从而识别是否存在异常值。简单且易于实现,但面对大规模数据或者数据波动较大的场景时,可能无法准确捕捉复杂的欺诈行为。

1.1 基于标准差法的异常检测
标准差法通过计算数据的均值和标准差,来判断数据点是否异常。如果数据点与均值的差值大于某个倍数的标准差,就可以被认为是异常。

代码实现:
python
复制代码

import pandas as pd
import numpy as np

生成模拟数据

**np.random.seed(42)
user_ids = np.random.randint(1000, 1100, 200)
click_counts = np.random.poisson(lam=3, size=200)

data = pd.DataFrame({
   
    'user_id': user_ids,
    'click_count': click_counts
})**

基于标准差的异常检测


mean = data['click_count'].mean()
std_dev = data['click_count'].std()

设定异常值检测的阈值

threshold = 2
data['anomaly'] = data['click_count'].apply(lambda x: 'Anomaly' if abs(x - mean) > threshold * std_dev else 'Normal')

输出检测结果


print(data.head())

1.2 评估与效果
基于标准差的异常检测简单直接,但对于复杂的行为模式无法提供精准的识别。此方法在数据分布较为稳定且无复杂欺诈行为的场景下较为有效。但如果数据存在多种行为模式(如刷单与正常交易同时进行),该方法可能导致较高的误报率。

  1. 基于机器学习的方法
    机器学习方法通过训练模型来识别异常行为,能有效应对复杂的数据模式。常见的机器学习方法包括 Isolation Forest、One-Class SVM 等,它们不依赖于标签数据,能够自动识别异常样本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

搞技术的妹子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值