申请评分卡模型中的拒绝推断(RI)技术

        如果建模仅基于具有已知性能的可接受总体,则申请评分卡具有自然发生的选择偏差。然而,由于他们未知的表现,从建模过程中排除了一大批被拒绝的客户。 为了解决选择偏差问题,申请评分卡模型应该包含两个人群。 这意味着需要推断拒绝的未知性能,这是使用拒绝推断(RI方法完成的。

使用拒绝推断RI,在评分卡开发过程中还需要一些额外的步骤:

  1. 在接受方上构建逻辑回归模型 - 这是base_logit_model
  2. 使用拒绝推断技术推断拒绝
  3. 将接受和推断拒绝合并成一个数据集(complete_population
  4. complete_population上构建一个新的逻辑回归模型 - 这是final_logit_model
  5. 验证final_logit_model
  6. 根据final_logit_model创建一个评分卡模型

http://5b0988e595225.cdn.sohucs.com/images/20180606/a753563131a14026adb14308014bc41c.png

                                                    图1.使用拒绝推断开发评分卡

拒绝推断是一种缺失值处理形式,其结果是非随机性缺失MNAR),导致接受和拒绝人群之间存在显着差异。 有两种广泛的方法来推断缺失的表现:分配和增强,每种方法都有不同的技术。 两种方法中最流行的技术是比例分配,简单增强和模糊增强和parcelling

http://5b0988e595225.cdn.sohucs.com/images/20180606/fdc47e7c4ef34e44a0b55a7c9478dc7d.png

                                                          图2.拒绝推断技术

 

比例分配是将拒绝对象随机划分为的账户,其比率比公认的人群高两至五倍。

简单增强假定使用base_logit_model对拒绝进行评分,并根据截止值将其分为帐户。截止值被选择为使得拒绝者的不合格率比接受者中大25倍。

模糊增强假定使用base_logit_model对拒绝进行评分。每条记录都有效地复制,其中包含加权和加权组件,二者均来自拒绝评分。这些权重,以及所有接受权重等于“1”的权重,将在final_logit_model中使用。建议的策略是拒收率比接受者高两到五倍。

Parcelling是一种包含简单增强和比例分配的混合方法。通过将使用base_logit_model生成的拒绝分数分箱成分数带中来创建parcel。比例分配适用于每个parcel,其比率是被接受人口的等值分数带中的率的两倍至五倍。

http://5b0988e595225.cdn.sohucs.com/images/20180606/e34f87746e2a4ce88111a1f5373b3405.png

                                                             图3.比例分配

http://5b0988e595225.cdn.sohucs.com/images/20180606/27c7a493c860420697222e3089f31628.png

                                                              图4.简单增强

http://5b0988e595225.cdn.sohucs.com/images/20180606/0373b8b3967a41cc894e3aa32b8e44b0.jpeg

                                                   图5.模糊增强

http://5b0988e595225.cdn.sohucs.com/images/20180606/f8f00c084011421c9bad6965828c5e32.png

                                          图6. Parcelling

 

  • 1
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
文句子关系推断是一项重要的自然语言处理任务,可以用于文本分类、情感分析、问答系统等领域。在huggingface,使用预训练模型进行文句子关系推断的实现非常简单,下面是一个示例代码: ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification # 加载文BERT模型 tokenizer = AutoTokenizer.from_pretrained("bert-base-chinese") model = AutoModelForSequenceClassification.from_pretrained("bert-base-chinese") # 准备数据集 sentences = ["这是一个正向句子", "这是一个负向句子"] labels = [1, 0] # 进行数据预处理 inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt") # 进行模型训练和微调 outputs = model(**inputs, labels=labels) loss = outputs.loss logits = outputs.logits # 进行模型评估和推理 predictions = logits.argmax(dim=1) ``` 在上面的代码,我们使用了文BERT模型进行句子关系推断的训练和微调,使用了PyTorch框架进行模型的训练和推理。在进行模型训练和微调时,我们需要指定模型输入和输出的格式,以及损失函数和优化器的选择。在进行模型评估和推理时,我们可以使用模型输出的logits进行分类,得到模型对于输入句子的分类结果。 需要注意的是,上面的代码只是一个简单的示例,实际应用还需要根据具体任务进行模型调整和性能优化。同时,在进行文句子关系推断的实战,还需要注意数据集的选择和预处理,以及模型训练的超参数的选择等方面。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值