分类简单来说,就是根据文本的特征或属性,划分到已有的类别中。也就是说,这些类别是已知的,通过对已知分类的数据进行训练和学习,找到这些不同类的特征,再对未分类的数据进行分类。
聚类的理解更简单,就是你压根不知道数据会分为几类,通过聚类分析将数据或者说用户聚合成几个群体,那就是聚类了。聚类不需要对数据进行训练和学习。
分类属于监督学习,聚类属于无监督学习。常见的分类比如决策树分类算法、贝叶斯分类算法等聚类的算法最基本的有系统聚类,K-means均值聚类,这些都很常见,网上资料一大推,不再赘述。(简单说就是,物以类聚,大伙抱团行动,拿最简单的k-means来说,以‘距离’作为判断规则,就像小时候分校区,你家这块离哪个小学近,就去那个小学上学(现在属于区来选小学了,但这个区也可以用无监督的聚类算法来模拟,这个就跑题了)分完结果是这样的。。