定义与概念
AIOps,即人工智能运维(Artificial Intelligence for IT Operations),是将人工智能技术应用于 IT 运维领域,以实现自动化、智能化的运维管理。它通过整合大数据、机器学习等先进技术,对海量运维数据进行实时分析,从而快速识别、诊断和解决问题。
不同的人、机构对它有着不同的阐释。比如,Gartner 认为 AIOps 平台是结合大数据、人工智能(AI)或机器学习功能的软件系统,用以增强和部分取代广泛应用的现有 IT 运维流程和事务,包括可用性和性能监控、事件关联和分析,IT 服务管理以及运维自动化。还有观点将其看作是对规则的 AI 化,即将人工总结运维规则的过程变为自动学习的过程,最终达到 “有 AI 调度中枢管理的,质量、成本、效率三者兼顾的无人值守运维,力争所运营系统的综合收益最大化” 的终极目标。
总的来说,AIOps 旨在通过自动化、智能化的方式,实现对 IT 运维数据的全面收集、高效分析、精准预测和科学决策,进而提升运维效率,降低运维成本,优化用户体验,涵盖的范围涉及从数据采集、分析,到故障预测、自动化响应等多个与 IT 运维相关的环节。
发展背景与现状
在如今数字化转型的大背景下,IT 系统的规模和复杂性不断攀升,对运维效率和智能化水平的要求也随之提高。特别是在云计算、大数据、物联网等技术的推动下,传统的运维方式已逐渐显露出其局限性,无法满足现代企业对于高效、智能运维的迫切需求,这就促使了 AIOps 的兴起。
从行业发展历程来看,IT 运维经历了从手工运维到自动化运维,再到智能化运维(AIOps)的演进过程。手工运维阶段,依赖人工操作,效率低且易出错,难以应对大规模、高复杂度的 IT 系统运维需求。随着自动化技术发展,自动化运维工具虽提升了效率和准确性,但面对不断进步的技术和复杂的业务需求,也逐渐面临挑战。而 AIOps 的出现,利用先进的 AI 和 ML 技术,实现了对 IT 系统运维的智能化、自动化和预测性管理,带来了革命性的变革。
目前,AIOps 在行业内的应用和发展势头强劲。根据《中国 AIOps 现状调查报告(2024)》显示,超 4 成企业在运维方面年平均投资规模超 5000 万元,企业在运维相关技术投资时最优先考虑智能运维,占比为 61.53%。并且随着 AIOps 建设不断深入,更多企业进入 L3 进阶智能化运维阶段,半数以上的受访者自评企业目前智能运维处于 L3 进阶智能化阶段(58.42%)。
我国智能运维行业参与者众多,市场集中度低,其中包括华为、联想等以硬件起家的厂商,腾讯、阿里等互联网企业,以及新炬网络、擎创科技、博睿数据等智能运维独角兽企业,它们都在积极推动 AIOps 在不同场景下的应用与落地,助力企业实现运维数智化转型,未来也将专注在多样化的应用场景中继续建设智能运维能力,比如 66.20% 的企业计划在更多新场景的应用中建设智能运维能力等。
AIOps 平台常见功能盘点
数据采集功能
AIOps 平台的数据采集功能至关重要,它能够从多个不同的数据源收集信息,展现出强大的全面性与灵活性。
在日志采集方面,有着多样的采集方式与工具可供选择。比如可以在目标系统上部署采集 agent,像 Flume 就是一个分布式的、可靠且高可用的海量日志采集、聚合、传输系统,基于数据流架构,简单灵活,还有容错机制和故障恢复机制,可通过简单扩展用于在线分析;Filebeat 作为轻量级日志采集器,客户端能指定目录文件,跟踪其变化并发送到目标位置,如 ElasticSearch、Logstash 等;Logstash 不仅具备日志采集功能,还能进行日志解析、转换等操作,通过插件配置可支持众多输入源、过滤器以及输出类型;Fluentd 采用插件式架构,有着高可扩展性、高可用性及高可靠性,支持各类数据源和多种数据输出插件。此外,还有 Scribe、Syslog、SNMP TRAP 等也可用于不同场景下的日志信息采集。
对于数据库同步,像 Sqoop 可用于 Hadoop 和关系数据库之间传送数据,既能把 MySQL、Oracle 等关系型数据库的数据导入到 Hadoop 的 HDFS、HIVE、HBase 中,也能进行反向的数据导出操作;DataX 则是阿里广泛使用的离线数据同步工具 / 平台,能实现各种异构数据源之间高效的数据同步。
消息队列 MQ 也是数据采集时常用的方式,像 RabbitMQ、ActiveMQ、ZeroMQ、RocketMQ、Ka