一、AIOps的核心目标
AIOps(Artificial Intelligence for IT Operations)通过数据驱动与算法赋能解决传统运维痛点:
- 故障预测:提前发现潜在风险(如磁盘容量趋势预测)。
- 根因分析:从海量日志中快速定位问题源头。
- 自动化响应:基于规则或模型触发自愈动作(如重启服务、扩容节点)。
二、日志分析基石:ELK技术栈
1. ELK架构与组件
- Elasticsearch:分布式搜索与分析引擎,存储日志数据。
- Logstash:日志采集、过滤与转发管道。
- Kibana:可视化仪表盘与交互式分析界面。
- 扩展方案:
- Filebeat:轻量级日志采集器,替代Logstash资源消耗。
- Fluentd:统一日志层,支持多数据源集成。
2. 快速部署ELK集群
Docker Compose一键部署:
version: '3'
services:
elasticsearch:
image: elasticsearch:8.9.0
environment:
- discovery.type=single-node
volumes:
- es_data:/usr/share/elasticsearch/data
ports