Ollama与Llama是什么关系

什么是Ollama,它与Llama是什么关系?

Ollama是一个开源的 LLM(大型语言模型)服务工具,用于简化在本地运行大语言模型,降低使用大语言模型的门槛,使得大模型的开发者、研究人员和爱好者能够在本地环境快速实验、管理和部署最新大语言模型,包括如Llama 3、Phi 3、Mistral、Gemma等开源的大型语言模型。

Ollama目前支持以下大语言模型:library

因此,Ollama与Llama的关系:Llama是大语言模型,而Ollama是大语言模型(不限于Llama模型)便捷的管理和运维工具

那么我们如何在本地部署这个大模型呢?
首先我们需要到ollama官网下载,然后在命令窗中输入一些ollama的命令

ollama只是个工具,那怎么跑我们想要的大模型呢?
下载模型
Ollama可以直接下载内置的几种模型,但选择有限。我们更希望从HuggingFace https://huggingface.co/Kanahei/ollama3.1/discussions下载以便方便地评估各种模型,所以,这里我们并不从Ollama直接下载,而是从HuggingFace下载。

在HuggingFace搜索llama3,设置Languages为Chinese,可以看到若干基于LLaMa3的中文模型,我们选择一个GGUF格式的模型,GGUF格式是llama.cpp团队搞的一种模型存储格式,一个模型就是一个文件,方便下载与运行。

点击Files,可以看到若干GGUF文件,其中,q越大说明模型质量越高,同时文件也更大,我们选择q6,直接点击下载按钮,把这个模型文件下载到本地。

导入模型
下载到本地的模型文件不能直接导入到Ollama,需要编写一个配置文件,随便起个名字,如Modelfile,配置文件内容如下:https://github.com/ollama/ollama

FROM "/Users/liaoxuefeng/llm/llama3-8b-cn-q6/Llama3-8B-Chinese-Chat.q6_k.GGUF"

TEMPLATE """{{- if .System }}
<|im_start|>system {{ .System }}<|im_end|>
{{- end }}
<|im_start|>user
{{ .Prompt }}<|im_end|>
<|im_start|>assistant
"""

SYSTEM """"""

PARAMETER stop <|im_start|>
PARAMETER stop <|im_end|>

第一行FROM "..."指定了模型文件路径,需要修改为实际路径,后面的模板内容是网上复制的,无需改动。

然后,使用以下命令导入模型:

$ ollama create llama3-cn -f  Modelfile
llama3-cn是我们给模型起的名字,成功导入后可以用list命令查看:

$ ollama list
NAME              ID            SIZE    MODIFIED
llama3-cn:latest  f3fa01629cab  6.6 GB  2 minutes ago
可以下载多个模型,给每个模型写一个配置文件(仅需修改路径),导入时起不同的名字,我们就可以用Ollama方便地运行各种模型。

运行模型
使用Ollama的run命令可以直接运行模型。我们输入命令ollama run llama3-cn就可以将我们制定的模型运行起来出现>>>提示符时就可以输入问题与模型交互。输入/exit退出。

Open-WebUI-CSDN博客

<think>好的,我现在需要回答用户关于Ollama和DeepSeek之间关系的问题。首先,我得确认自己对这两个平台的理解是否正确。 Ollama是一个开源的大型语言模型(LLM)服务工具,主要用于本地部署和运行各种AI模型。我记得它支持用户下载和管理不同的模型,比如Llama 2、Mistral等,方便开发者在本地环境中进行测试和应用开发。它的主要优势在于简化了模型的使用流程,让用户无需复杂的配置就能运行模型。 然后是DeepSeek,根据用户提供的引用内容,它是由中国的深度求索公司开发的AI模型。DeepSeek的特点可能包括在特定领域的优化,比如逻辑推理和数学能力,这可能使它在处理复杂问题时表现更好。引用中提到DeepSeek在节点内部进行了全面的思考,并且生成的回答格式美观,比如使用Markdown,这可能意味着它在输出结构化内容方面有优势。 接下来,我需要比较两者的关系。首先,它们的定位不同。Ollama更像是一个工具或平台,帮助用户管理和运行各种模型,而DeepSeek本身是一个具体的AI模型。因此,Ollama可以作为一个载体,用来部署和运行DeepSeek模型,如果DeepSeek提供模型文件的话。不过,根据现有的信息,DeepSeek可能并未直接集成到Ollama的默认模型库中,所以用户可能需要手动配置才能通过Ollama使用DeepSeek。 然后,应用场景方面。Ollama适合需要快速本地部署和测试不同模型的开发者,而DeepSeek可能更适合需要高性能和专业领域处理的企业或研究场景。例如,如果用户需要处理复杂的数学问题,DeepSeek可能更合适;而如果只是需要快速搭建一个模型服务,Ollama更方便。 技术架构方面,Ollama可能更注重模型的兼容性和易用性,支持多种模型格式和简单的API调用。DeepSeek则可能在模型结构、训练数据或优化算法上有独特之处,以提升其在特定任务中的表现,如引用中提到的逻辑推理能力。 另外,用户提到的引用[1]指出DeepSeek生成的回答格式美观,这可能意味着它在生成结构化文本(如Markdown)方面有特别优化,适合需要直接输出格式化内容的场景。而Ollama本身不涉及模型的具体输出格式,更多是执行模型本身的能力。 最后,需要确认是否存在直接的合作或集成关系。根据现有资料,似乎两者是独立的项目,Ollama作为一个平台支持多种模型,而DeepSeek是专有模型,可能未直接整合到Ollama中。不过,技术上讲,用户可以通过Ollama加载DeepSeek的模型文件,如果可用的话。 总结下来,两者的关系主要是互补而非竞争,Ollama提供部署环境,DeepSeek提供特定领域的模型能力。用户可以根据需求选择使用其中一个或结合两者。</think>### OllamaDeepSeek的关系对比 #### 1. **定位功能差异** - **Ollama** 是一个开源的本地化大型语言模型(LLM)**运行平台**,支持用户快速部署和管理多种模型(如Llama 2、Mistral等)。其核心价值在于简化模型的本地化使用流程,适合开发者快速测试和应用不同模型[^2]。 - **DeepSeek** 是由深度求索(DeepSeek Inc.)开发的**垂直领域AI模型**,专注于数学、代码和逻辑推理等复杂任务,强调专业场景下的高性能输出。其特点是生成内容的结构化可读性(如Markdown格式)[^1]。 #### 2. **技术架构适用场景** - **Ollama** 提供轻量级服务框架,支持跨平台运行,适合需要快速搭建本地模型服务的场景(如个人开发、原型验证)。例如,通过命令行直接调用模型: ```bash ollama run llama2 ``` - **DeepSeek** 作为模型本身,需依赖特定平台或接口调用。其优势体现在专业领域任务中,例如生成包含数学公式的答案(如:$f(x) = \int_{0}^{x} e^{-t^2} dt$)或代码片段。 #### 3. **潜在协同关系** - **Ollama可作为DeepSeek的部署工具**:若DeepSeek开放模型权重或接口,用户可通过Ollama本地化运行,实现低延迟、高隐私的应用场景。 - **互补性**:Ollama解决模型部署的易用性问题,DeepSeek提供垂直领域的高质量输出,两者结合可提升开发效率。 #### 4. **关键区别总结** | **维度** | **Ollama** | **DeepSeek** | |----------------|-------------------------------------|-----------------------------------| | **核心功能** | 模型运行平台 | 垂直领域AI模型 | | **技术重点** | 本地化部署模型管理 | 专业领域任务优化 | | **输出特性** | 依赖加载的模型 | 结构化输出(如Markdown、数学公式)| | **典型用户** | 开发者、研究者 | 企业、教育、科研场景 | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘贤松

一本万利

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值