Pandas中loc和iloc函数用法详解

start from scratch
英[stɑːt frəm skrætʃ]
美[stɑːrt frəm skrætʃ]
v. 白手起家; 从起跑线开始,从头开始;

Pandas中loc和iloc函数用法详解(源码+实例)

0.49 字数 250 阅读 21,880

loc函数:通过行索引 "Index" 中的具体值来取行数据(如取"Index"为"A"的行)
iloc函数:通过行号来取行数据(如取第二行的数据)

本文给出loc、iloc常见的五种用法,并附上详细代码。

1.利用loc、iloc提取行数据

import numpy as np
import pandas as pd
#创建一个Dataframe
data=pd.DataFrame(np.arange(16).reshape(4,4),index=list('abcd'),columns=list('ABCD'))

In[1]: data
Out[1]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15

#取索引为’a’的行
In[2]: data.loc[‘a’]
Out[2]:
A 0
B 1
C 2
D 3

#取第一行数据,索引为’a’的行就是第一行,所以结果相同
In[3]: data.iloc[0]
Out[3]:
A 0
B 1
C 2
D 3

2. 利用loc、iloc提取列数据

In[4]:data.loc[:,['A']] #取'A'列所有行,多取几列格式为 data.loc[:,['A','B']]
Out[4]: 
    A
a   0
b   4
c   8
d  12

In[5]:data.iloc[:,[0]] #取第0列所有行,多取几列格式为 data.iloc[:,[0,1]]
Out[5]:
A
a 0
b 4
c 8
d 12

3.利用loc、iloc提取指定行、指定列数据

In[6]:data.loc[['a','b'],['A','B']] #提取index为'a','b',列名为'A','B'中的数据
Out[6]: 
   A  B
a  0  1
b  4  5

In[7]:data.iloc[[0,1],[0,1]] #提取第01行,第01列中的数据
Out[7]:
A B
a 0 1
b 4 5

4.利用loc、iloc提取所有数据

In[8]:data.loc[:,:] #取A,B,C,D列的所有行
Out[8]: 
    A   B   C   D
a   0   1   2   3
b   4   5   6   7
c   8   9  10  11
d  12  13  14  15

In[9]:data.iloc[:,:] #取第0,1,2,3列的所有行
Out[9]:
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15

5.利用loc函数,根据某个数据来提取数据所在的行

In[10]: data.loc[data['A']==0] #提取data数据(筛选条件: A列中数字为0所在的行数据)
Out[10]: 
   A  B  C  D
a  0  1  2  3

利用loc函数的时候,当index相同时,会将相同的Index全部提取出来,优点是:如果index是人名,数据框为所有人的数据,那么我可以将某个人的多条数据提取出来分析;缺点是:如果index不具有特定意义,而且重复,那么提取的数据需要进一步处理。

更多精彩内容,就在简书APP
"没有绝“对”的事情,争论之后,我们觉得合理那就行了。"
赞赏支持 还没有人赞赏,支持一下
云爬虫技术研究笔记 公众号:《云爬虫技术研究笔记》 <br>CSDN博客专家<br>华为云享专家
总资产31 (约1.65元) 共写了9.8W字 获得219个赞 共322个粉丝
关注
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值