李宏毅机器学习_10-4无监督学习-自编码器

没有数据的时候直接自我学习,非常妙
在这里插入图片描述
深度学习,每层用不同维度,能把不同层面的特征学习出来,更好的表示输入的特征向量
在这里插入图片描述
加入噪音,鲁棒性会更好,不仅能学到输入的特征,还能把噪音数据过滤掉
在这里插入图片描述
传统的词袋发只是累计的一个词频统计而已,并没有把上下文的语义信息考虑进来
在这里插入图片描述
相似度匹配的前提是,这个进行相似度计算的向量一定是足够好的能表示输入图像、文本、语音特征的向量,那要训练出这样的向量,数据不能少,模型足够好
在这里插入图片描述
图像的恢复,饭池化和反卷积
在这里插入图片描述
池化就是补零回复而已,反卷积其实本质上还是一个卷积运算,补零后进行卷积运算而已
在这里插入图片描述
预训练模型只是,无监督自编码的一个应用而已
在这里插入图片描述
引入L2正则化,让向量分布在0的周围,取周围的向量,恢复后,能看到机器确实能学到有规律的不一样的特征
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值