72_text_generation\ernie-gen 理论理解

https://zhuanlan.zhihu.com/p/141492554
https://zhuanlan.zhihu.com/p/268836323
https://zhuanlan.zhihu.com/p/145218928

ERNIE-GEN 是面向生成任务的预训练-微调框架,首次在预训练阶段加入span-by-span 生成任务,让模型每次能够生成一个语义完整的片段。在预训练和微调中通过填充式生成机制噪声感知机制来缓解曝光偏差问题。此外, ERNIE-GEN 采样多片段-多粒度目标文本采样策略, 增强源文本和目标文本的关联性,加强了编码器和解码器的交互。
我们提出了三种方法来提高语言生成能力:

Span-by-span 生成任务: 让模型能够每次生成一个语义完整的片段。
填充式生成和噪声感知生成: 缓解曝光偏差问题。
多片段-多粒度目标文本采样: 预训练阶段增强编码器和解码器的交互。
我们基于 Transformer 模型设计了 Mulit-Flow Attention 框架,用于实现 span-by-span 的填充式生成。
在这里插入图片描述
自然语言处理主要包含语言理解和语言生成两大类任务。如新闻智能写作、文本自动摘要、智能诗歌创作都属于自然语言处理生成任务。之前的预训练模型主要关注语言理解类任务,在生成任务上还处于一个探索阶段。因此百度的研究人员对生成预训练技术进行了深入的探索和研究。

的生成式预训练模型ERNIE-GEN,主要针对: 1) 生成训练中的“曝光偏置(exposure bias)”问题;2) 如何用人类写作习惯去训练自然语言生成;3) 如何在预训练中增强encoder和decoder的交互 这三个问题,提出了一种Multi-Flow结构的预训练和微调框架。论文中,ERNIE-GEN利用更少的参数量和数据,在摘要生成、问题生成、对话和生成式问

预测粒度:

传统的生成模型是进行逐词预测的,而人类通常是以语义完整的短语作为写作构思的单元。例如,当人在写作时,会将「New York」作为一个整体思考,而不是「New」->「York」逐词思考。

曝光偏差:

在预测第 n 个目标词时,训练阶段以 ground-truth 中的前 n-1 个词作为输入,而解码阶段把模型自己生成的前 n-1 个词当作输入。这种有偏的学习方式会在上文生成质量不佳时,导致后续生成的错误累积。

编码与解码的交互:

在自然文本的段落中,往往距离越远的句子关联性越弱。之前的工作在预训练时,在输入的文本中选一个连续片段作为目标文本,其余作为源文本。随着输入文本长度的增加,源文本和目标文本的距离增大、关联性减弱,导致预训练阶段无法充分学习编码器和解码器的交互。
在这里插入图片描述

归根结底就是存在什么问题,用了什么策略,模型的主架构都是差不多的。

逐片段生成任务

ERNIE-GEN 在生成预训练中提出了逐片段 (span-by-span) 生成任务的训练目标。片段(span)是 1 到 3 个词组成的 N-Gram。在生成时,模型对每个片段进行整体预测,片段内部词的生成互不依赖。这种训练方式让模型具备短语粒度的生成能力,能够提升生成质量。

为了保证每个片段都是一个语义完整的短语,ERNIE-GEN 在预训练语料中根据 T 检验统计语义紧密的 N-Gram 词表,用该词表将输入文本切分成片段序列。

填充生成机制

传统的自回归生成模型用第 n-1 个词隐层输出的表示来预测第 n 个词,当前词的生成强依赖于上一个词。在训练中第 n-1 个词总是正确的,而解码时如果第 n-1 个词生成错误,会对第 n 个词的生成形成很强的干扰。更严重的是,沿着这条生成路径会快速地产生错误累积。

为了解决这个问题,ERNIE-GEN 在训练和解码时用统一的「[ATTN]」和第 n 个位置编码作为生成第 n 个词的底层输入。「[ATTN]」与前 n-1 个词根据词义信息和位置信息进行 Self-Attention 计算,自适应地将上文中的重要信息「填充」(infilling)到当前词的表示中,用以进行预测。这种生成方式减小了对上一个词的依赖,训练和解码的一致性减弱了曝光偏差。
在这里插入图片描述

噪声感知生成方法

为了进一步强化编码器的鲁棒性,ERNIE-GEN 在训练时按一定概率将目标文本中的词替换成噪声,用来模拟解码时的生成错误,提升模型排除错误干扰的能力。研究者在实验中发现,仅用简单的随机词替换策略就能较好地提升生成效果。

噪声感知生成方法

为了进一步强化编码器的鲁棒性,ERNIE-GEN 在训练时按一定概率将目标文本中的词替换成噪声,用来模拟解码时的生成错误,提升模型排除错误干扰的能力。研究者在实验中发现,仅用简单的随机词替换策略就能较好地提升生成效果。
在这里插入图片描述

Multi-Flow 框架

为了实现上述的填充生成机制和逐片段生成,ERNIE-GEN 基于 transformer 设计了 multi-flow attention 结构。其中 contextual flow 用于提供上文的表示;word- by-word flow 和 span-by-span flow 均由「[ATTN]」占位符+位置编码的序列构成,二者根据不同的掩码矩阵分别实现 word 粒度和 span 粒度的生成。
在这里插入图片描述

再次理解

“曝光偏置(exposure bias)“问题:

teacher forcing的生成训练,在训练中用Ground Truth作为decoder端的输入,而解码时用之前生成的序列作为decoder端的输入,导致训练和解码的产生偏差;

逐字符学习的问题:

传统的seq2seq训练,采用逐字符(word-by-word)的学习方式,存在1)预测时过度依赖上一个词;2)与人类写作习惯 (实体、短语甚至句子同时构思,并非单个字符) 不一致的问题;

Encoder和Decoder相关性减弱的问题:

在自监督的seq2seq预训练中,当输入序列很长时(假如encoder和decoder各50%),那么decoder和encoder的语义相关性减弱,模型学习将逐渐退化为Language Modeling。

今年1月,百度发布了全新的生成式预训练模型 ERNIE-GEN,主要针对: 1) 生成训练中的“ 曝光偏置(exposure bias)”问题;2) 如何用人类写作习惯去训练自然语言生成;3) 如何在预训练中增强 encoderdecoder的交互 这三个问题,提出了一种Multi-Flow结构的预训练和微调框架。论文中, ERNIE-GEN利用更少的参数量和数据,在摘要生成、问题生成、对话和生成式问答4个任务共5个数据集上取得了SOTA效果。
论文链接: arxiv.org/pdf/2001.1131
开源地址: github.com/PaddlePaddle

1. Motivation

之前的生成式预训练模型如MASS、UniLM、BART等,将 Mask LM学习任务和seq2seq框架结合,在一系列生成任务上取得了显著的提升,并刷新SOTA。但这些预训练模型却很少关注自然语言生成中的一些具体的问题,对此ERNIE-GEN从以下3个问题展开了实验:

  • “曝光偏置(exposure bias)“问题:teacher forcing的生成训练,在训练中用Ground Truth作为decoder端的输入,而解码时用之前生成的序列作为decoder端的输入,导致训练和解码的产生偏差;
  • 逐字符学习的问题:传统的seq2seq训练,采用逐字符(word-by-word)的学习方式,存在1)预测时过度依赖上一个词;2)与人类写作习惯 (实体、短语甚至句子同时构思,并非单个字符) 不一致的问题;
  • Encoder和Decoder相关性减弱的问题:在自监督的seq2seq预训练中,当输入序列很长时(假如encoder和decoder各50%),那么decoder和encoder的语义相关性减弱,模型学习将逐渐退化为Language Modeling。

针对以上3个问题,ERNIE-GEN提出一套基于Multi-Flow attention结构的预训练和微调框架:

2. Methods

★ 2.1 “曝光偏置(exposure bias)”问题

在基于Transformer的seq2seq框架中,decoder端第 [公式] 个字符 [公式] 的预测公式如下:

[公式]

其中 [公式] 分别表示预测字符向量和Ground Truth字符向量, [公式] 为encoder端的表示;对 [公式] 的预测起着直接影响的是用来汇聚上文表示的 [公式] ,这也是训练和解码阶段产生差异最直接的地方。同时,[公式] 在训练和解码中也存在差异,但对 [公式] 的影响相对较弱。

为了在预训练阶段减小下游任务的“曝光偏置(exposure bias)”问题,ERNIE-GEN提出了两种适用于大规模无监督预料的生成训练方法:1)填充生成机制(Infilling Generation);2)噪声感知生成方法(Noise-aware Generation)。

  • Infilling Generation Mechanism 填充生成机制

针对训练和解码中 [公式] 存在的差异,Infilling Generation通过在decoder端每个字符后填充符号[ATTN]作为 [公式] 来汇聚上文表示,统一了训练和解码中 [公式] 的差异:

☆ Infilling Generation的好处有两点:1)减弱了预测[公式] 时对 上一个字符[公式] (训练时)或者 [公式] (解码时)的依赖,将预测的注意力转移到更全局的上文表示,从而在解码阶段,有利于缓解 [公式] 预测错误对 [公式] 的影响,增强生成的鲁棒性。同时在训练阶段,有利于缓解局部过度依赖;2) 统一了训练和解码中 [公式] 的差异,有利于减弱"曝光偏置"。

  • Noise-aware Generation Method 噪声感知生成

针对训练和测试中 [公式] 的差异,ERNIE-GEN在训练中对decoder的输入序列添加随机噪声,来训练模型感知错误,并通过调整attention权重来减弱错误对后续生成的影响;

但最好的方式是用模型先生成一遍目标序列,再根据生成的分布进行采样,这种方式是最本质解决”曝光偏置“的方法,如ACL2019最佳论文,将模型生成序列和Ground Truth序列融合输入decoder进行学习。考虑到预训练基于大规模的无监督预料,ERNIE-GEN只采用简单的随替换,来缓解“曝光偏置”。

★ 2.2 逐字符学习的问题

传统的自回归seq2seq训练采用逐字符(word-by-word)的学习范式,而人类写作,往往是实体、短语甚至句子同时构思好的,并非逐字思考;而且逐字符学习很容易局部过拟合,过度依赖上一个字符的表示。

针对逐字符学习的不足,ERNIE-GEN提出了逐片段(span-by-span)的学习范式,即训练时,每步不只预测一个字符,而是预测一个语义完成的片段:

图中 [公式] 为一个语义完整的 [公式] 。逐字符学习(word-by-word)的目标序列的概率为:

[公式]

[公式]

逐片段学习(span-by-span)的目标序列的概率为:

[公式]

[公式] 内, [公式][公式] 是同时预测的,它们都依赖相同的上文 [公式] 。使模型在 [公式] 位置具有生成下一个语义片段 [公式] 的能力,让模型更具“远见”,并提高生成质量。

为了连续地采样语义完整片段(semantically-complete span),ERNIE-GEN通过T-检验来统计训练数据中的[公式]-gram片段:

  • step1: 基于初始假设 [公式] : “一个随机的 [公式]-gram ([公式] )不是一个具备统计意义的片段“,可以计算得到训练数据中所有bi-gram和tri-gram的t-统计值,公式如下:

[公式]

其中 [公式][公式] 的统计概率, [公式][公式] 的方差(伯努利分布); [公式][公式] -gram的总数;

  • step2:筛选出t-统计值 top 20w的bi-gram和top 5w tri-gram以及全部uni-gram来构造span词典 [公式];*注:t-统计值越高表示越否定假设 [公式][公式] 越可能是统计意义下完整的片段。
  • step3: 根据词典 [公式]在ground truth序列中采样span,按照tri-gram [公式] bi-gram [公式] uni-gram的顺序在[公式]中查询,直到一个gram被查到。

★ 2.3 Encoder和Decoder相关性减弱的问题

在构造预训练数据时,UniLM和MASS都采样一段连续的子序列作为生成目标,当输入序列很长时,由于目标序列较长,decoder端对encoder的依赖减弱,模型训练有退化为language model的风险,不利于encoderdecoder的联合预训练。对此ERNIE-GEN采用多片段-多粒度采样的策略来构造预训练数据:

给定输入序列 [公式] ,ERNIE-GEN先采样一个长度分布 [公式] ,根据 [公式][公式] 中采样子序列,直到所有子序列 [公式] 的总长度到 [公式][公式]。拼接后的的序列 [公式] 为预训练学习的目标序列,采样后的 [公式] 记作 [公式] 。如此一来,采样的子序列和 [公式] 的语义相关性很强,encoderdecoder的相关性也进一步得到增强,有利于encoderdecoder的联合预训练。

3. Model Architecture

★ 3.1 Multi-Flow Attention 多流attention结构

基于Infilling generation机制,ERNIE-GEN在预训练中将word-by-word和span-by-span的训练任务进行联合学习。在具体实现中,ERNIE-GEN将infilling generation中插入的[ATTN]符号抽出,拼接成了一个[ATTN]符号序列 [公式] 用于预测。模型通过输入两个等长的符号序列[公式] 来预测word-by-word任务和span-by-span任务的生成结果。

图中蓝色区域为Contexture Flow,用于提供上文表示,其 [公式]-th层到 [公式]-th层更新如下:

[公式]

其中,encoder序列为 [公式] ,加噪后的decoder输入序列为 [公式]

图中绿色区域为基于Infilling generation机制的Word-by-word generation flow,用于学习逐字符地生成,其 [公式]-th层到 [公式]-th层更新如下:

[公式]

其中 [公式] 表示 [公式]-th层,符号序列 [公式] 的 第 [公式] 个隐层向量。

图中橘色区域为基于Infilling generation机制的Span-by-span generation flow,用于学习逐片段地生成。在给定采样span的边界序列 [公式] 时,其 [公式]-th层到 [公式]-th层更新如下:

[公式]

其中 [公式] 表示 [公式]-th层,符号序列 [公式] 的 第 [公式] 个隐层向量,也即第 [公式] 个span的第 [公式] 个隐层向量, [公式] 。片段 [公式] 是在给定上文 [公式] 时,同时预测的。

在实现中,Contexture FlowWord-by-word FlowSpan-by-span Flow的输入分别是 [公式][公式],并通过不同的attention mask矩阵 [公式] 来实现具体的逻辑:

[公式]

Contextual Flow[公式] 是双向可见的, [公式] 是单向可见的 (seq2seq);而Word-by-word Flow中的符号序列 [公式] 不能看见相同位置的目标字符;Span-by-span Flow中,符号序列 [公式] 不能看见同一个span中的所有目标字符,如图中的 [公式]

Word-by-word FlowSpan-by-span Flow的loss加权更新,Pre-train阶段,ERNIE-GEN同时训练两个任务([公式]);Finetune阶段([公式]),ERNIE-GEN只学习word-by-word的生成任务:

[公式]

★ 3.2 Infilling Decoding 填充解码

训练时,ERNIE-GEN通过[ATTN]符号序列[公式]来生成序列,而在解码时,则需要一步一步地插入[ATTN]符号来汇聚上文表示,预测当前位置的字符。为了保证解码的效率,ERNIE-GEN在[ATTN]预测完毕后,会将[ATTN]的表示从序列中去除。具体的解码步骤如下图所示:

4. Experiments

★ 4.1 Pre-training

ERNIE-GEN使用和BERT、UnilM相同的训练数据(16G),base和large模型分别用BERT-base和BERT-large热启,训练40W步左右。预训练阶段,在decoder输入序列中加入比例为 [公式] [公式] 的噪声。ERNIE-GEN在最近补充了用160G预训练数据(同Roberta)下的模型性能,多个生成数据集上取得了SOTA。

★ 4.2 Fine-tuning

ERNIE-GEN在摘要生成、问题生成、对话和生成式问答4中任务上进行了实验,都验证了策略的有效性。

  • Question Generation- SQuAD
  • Generative Question Answering -CoQA
  • Finetune参数配置

★ 4.3 Ablation Studies

  • Infilling Generation 和 传统生成机制

ERNIE-GEN在3个小数据集上(Gigaword-10k, CNN/DM-10k和SQuAD)上对比了Infilling generation和传统生成机制。对比结果分别用Infilling generation机制和传统生成机制pre-train和finetune,实验结果如下:

当finetune不加噪声时,Infilling generation机制在CNN/DM-10k和SQuAD上较传统机制更好,但在Gigaword-10k上持平;当finetune加入噪声时,两种生成机制的效果都有明显的提升,且infilling机制在摘要生成任务上的涨幅为明显。

左图指出,infilling generation机制在不同的噪声 [公式] 比例下,都较传统生成机制性能更好;为了进一步说明噪声对生成训练起的作用,论文中分析了不同噪声比例下,比较了encoder字符、未加噪的decoder字符和加噪的decoder字符在最后一层的平均attention权重。有意思的是,随着噪声比例增加,模型将更多的注意力分配到decoder端,用于检测decoder端的错误,并且给错误的字符分配更小的权重,给正确的字符分配更高的权重,从而增加了生成的鲁棒性。

  • Span-by-span 训练任务 和 Noise-aware 生成方法

表中上方的对比实验指出,span-by-span训练任务和Noise-aware生成方法都起到了显著的性能提升作用。

UniLM利用Mask LM的方式进行finetune,实质上是在输入序列中加入[MASK]噪声,随后预测噪声位置的真实字符。这种噪声finetune方式存在Mask(噪声)和预测耦合的问题,学习性能不高 (UniLM在finetune中的mask比例为 [公式])。因此,为了验证ERNIE-GEN的Noise-aware生成方法相较于Mask LM方式更有效,论文也列出了ERNIE-GEN使用Mask LM([公式])方式进行finetune训练的实验结果结果,并验证了Noise-aware生成方法的有效性。

5. 总结

ERNIE-GEN针对生成任务的具体问题,如“曝光偏置”、局部强依赖性等,提出了一套在预训练中可行的解决方案,增强了自然语言生成学习的鲁棒性。通过设计一套pre-train和fine-tune的统一的学习框架,ERNIE-GEN缩小了pre-train和fine-tune间的差异;同时,通过infilling generation机制和noise-aware generation方法,也缩小了training和decoding之间的差异。最终,ERNIE-GEN在多项生成任务上取得了最好的效果,验证了所提出策略的有效性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值