信息论笔记整理(一)

信息论研究问题
  • 信源编码
    数据压缩极限
  • 信道编码
    信道容量极限

主要以香农理论为主

信息

消除不确定性

信息度量

不确定性消除程度
不确定的程度于事件概率相关
(信息量是概率的单调递减函数)

自信息量

I ( x ) = − l o g ( p ( x ) ) I(x)=-log(p(x)) I(x)=log(p(x))
其中
p ( x i ) > p ( x j ) → I ( x i ) < I ( x j ) I ( 0 ) = ∞ I ( 1 ) = 0 p(x_{i})>p(x_{j})\rightarrow I(x_{i})<I(x_{j})\\I(0)=∞\\I(1)=0 p(xi)>p(xj)I(xi)<I(xj)I(0)=I(1)=0
对统计独立事件
I ( x i , x j ) = I ( x i ) + I ( x j ) I(x_{i},x_{j})=I(x_{i})+I(x_{j}) I(xi,xj)=I(xi)+I(xj)
对数的底为

  • 2 量纲为bit
  • e 量纲为nat

H ( X ) = − ∑ p ( x ) l o g ( p ( x ) ) H(X)=-\sum p(x)log(p(x)) H(X)=p(x)log(p(x))
是平均不确定性,平均信息量
H ( X ) = E ( I ( X ) ) H(X)=E(I(X)) H(X)=E(I(X))
规定
0 l o g 0 = 0 0log0=0 0log0=0
零概率事件不影响熵

熵的性质
  • 非负
    当事件确定,熵为0
  • 事件给定,熵为定值
  • 离散熵有限
  • 仅依赖于概率分布
伯努利分布的熵

在这里插入图片描述

联合熵

H ( X , Y ) = − ∑ ∑ p ( x , y ) l o g ( p ( x , y ) ) = − E ( l o g ( p ( X , Y ) ) ) H(X,Y)=-\sum \sum p(x,y)log(p(x,y))\\=-E(log(p(X,Y))) H(X,Y)=p(x,y)log(p(x,y))=E(log(p(X,Y)))

条件熵

H ( Y ∣ X ) = ∑ p ( x ) H ( Y ∣ X = x ) = − ∑ ∑ p ( x , y ) l o g p ( y ∣ x ) = − E ( l o g ( p ( Y ∣ X ) ) ) H(Y|X)=\sum p(x)H(Y|X=x)\\=-\sum \sum p(x,y)logp(y|x)\\ =-E(log(p(Y|X))) H(YX)=p(x)H(YX=x)=p(x,y)logp(yx)=E(log(p(YX)))

熵的链式法则

H ( X , Y ) = H ( X ) + H ( Y ∣ X ) H(X,Y)=H(X)+H(Y|X) H(X,Y)=H(X)+H(YX)
当X,Y统计独立
H ( X , Y ) = H ( X ) + H ( Y ) H(X,Y)=H(X)+H(Y) H(X,Y)=H(X)+H(Y)

相对熵

D ( p ∣ ∣ q ) = ∑ p ( x ) l o g p ( x ) q ( x ) = E p l o g p ( X ) q ( X ) D(p||q)=\sum p(x)log\frac {p(x)}{q(x)}\\ =E_{p}log\frac {p(X)}{q(X)} D(pq)=p(x)logq(x)p(x)=Eplogq(X)p(X)
约定 0 l o g 0 0 = 0 ; 0 l o g 0 q = 0 ; p l o g p 0 = 0 0log\frac {0}{0}=0;0log\frac {0}{q}=0;plog\frac {p}{0}=0 0log00=0;0logq0=0;plog0p=0

相对熵性质
  • 非负
    当且仅当 p = q p=q p=q相对熵为0
  • 若有 p ( x ) > 0 , q ( x ) = 0 p(x)>0,q(x)=0 p(x)>0,q(x)=0则有 D ( p ∣ ∣ q ) = ∞ D(p||q)=∞ D(pq)=
  • 不是真正的距离
互信息

I ( X ; Y ) = ∑ ∑ p ( x , y ) l o g p ( x , y ) p ( x ) q ( y ) = D ( p ( x , y ) ∣ ∣ p ( x ) q ( y ) ) = E p ( x , y ) l o g p ( X , Y ) p ( X ) p ( Y ) I(X;Y)=\sum \sum p(x,y)log\frac {p(x,y)}{p(x)q(y)}\\ =D(p(x,y)||p(x)q(y))\\ =E_{p(x,y)}log\frac {p(X,Y)}{p(X)p(Y)} I(X;Y)=p(x,y)logp(x)q(y)p(x,y)=D(p(x,y)p(x)q(y))=Ep(x,y)logp(X)p(Y)p(X,Y)
表示给定一个随机变量对另一个随机变量不确定度造成的缩减量
推论
I ( X ; Y ) = H ( X ) − H ( X ∣ Y ) I(X;Y)=H(X)-H(X|Y) I(X;Y)=H(X)H(XY)

凸函数

f ( λ x 1 + ( 1 − λ ) x 2 ) ⩽ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(λx_{1}+(1-λ)x_{2})\leqslant λf(x_{1})+(1-λ)f(x_{2}) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)
例如 f ( x ) = x l o g ( x ) f(x)=xlog(x) f(x)=xlog(x)

凹函数

f ( λ x 1 + ( 1 − λ ) x 2 ) ⩾ λ f ( x 1 ) + ( 1 − λ ) f ( x 2 ) f(λx_{1}+(1-λ)x_{2})\geqslant λf(x_{1})+(1-λ)f(x_{2}) f(λx1+(1λ)x2)λf(x1)+(1λ)f(x2)
例如 f ( x ) = l o g ( x ) f(x)=log(x) f(x)=log(x)

Jensen不等式

f ( X ) f(X) f(X)凸函数,有
E f ( X ) ⩾ f ( E X ) Ef(X)\geqslant f(EX) Ef(X)f(EX)

熵的其他性质
  • 极值性
    H ( X ) ≤ l o g ∣ χ ∣ H(X)\leq log|\chi | H(X)logχ
  • 条件使熵减少
    H ( X ∣ Y ) ≤ H ( X ) H(X|Y)\leq H(X) H(XY)H(X)
  • 独立界
    H ( X 1 , . . . , X n ) ≤ ∑ H ( X i ) H(X_{1},...,X_{n})\leq \sum H(X_{i}) H(X1,...,Xn)H(Xi)
马尔可夫链

p ( x , y , z ) = p ( x ) p ( y ∣ x ) p ( z ∣ y ) p(x,y,z)=p(x)p(y|x)p(z|y) p(x,y,z)=p(x)p(yx)p(zy)

  • Y给定,X,Z条件独立
  • X->Y->Z蕴含Z->Y->X
数据处理不等式

若X->Y->Z

I ( X ; Y ) ≥ I ( X ; Z ) I(X;Y)\geq I(X;Z) I(X;Y)I(X;Z)
等号成立条件当且仅当 I ( X ; Y ∣ Z ) = 0 I(X;Y|Z)=0 I(X;YZ)=0
推论 I ( X ; Y ∣ Z ) ≤ I ( X ; Y ) I(X;Y|Z)\leq I(X;Y) I(X;YZ)I(X;Y)

费诺不等式

对于 X → Y → X ^ X\rightarrow Y\rightarrow \hat{X} XYX^
P e = P r X ≠ X ^ P_{e}=PrX \neq \hat{X} Pe=PrX=X^

H ( P e ) + P e l o g ∣ χ ∣ ≥ H ( X ∣ X ^ ) ≥ H ( X ∣ Y ) H(P_{e})+P_{e}log|\chi |\geq H(X|\hat{X})\geq H(X|Y) H(Pe)+PelogχH(XX^)H(XY)
弱化为
1 + P e l o g ∣ χ ∣ ≥ H ( X ∣ Y ) 1+P_{e}log|\chi |\geq H(X|Y) 1+PelogχH(XY)

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值