信息论:熵、相对熵、互信息、链式法则

本文介绍了信息论中的基本概念,包括熵的定义及其性质,联合熵和条件熵的计算,以及链式法则的应用。此外,还探讨了零熵、相对熵(KL散度)和互信息的概念,通过venn图展示了它们之间的关系。最后,总结了这些概念在信息处理和数据传输中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Entropy

熵的定义

在这里插入图片描述
二进制熵函数:
在这里插入图片描述
在这里插入图片描述
熵还可以看作是以下的期望值:
在这里插入图片描述
对于熵有以下性质:
在这里插入图片描述

Joint Entropy

联合熵的定义:
在这里插入图片描述
联合熵与熵的结论:
在这里插入图片描述
联合熵同样可以写为期望的形式:
在这里插入图片描述

Conditional Entropy

在给定 X = x X = x X=x的情况下,熵的定义为:
在这里插入图片描述
条件熵,是对以上X取值去顶情况下的期望:
在这里插入图片描述
对于各种熵有如下结论:
在这里插入图片描述

链式法则

与概率中的链式法则相似,因为熵是log p的期望,在概率中是乘积,则在熵中的链式法则就是相加。
在这里插入图片描述
用venn图表示链式法则:
在这里插入图片描述

Zero Entropy

在这里插入图片描述

Relative Entropy

相对熵又叫做KL distance,是对两个分布之间距离的度量
在这里插入图片描述
当q取值为0,此时KL distance为无穷。
在这里插入图片描述
相对熵并不是一种测度,不符合测度的基本条件:
在这里插入图片描述

Mutual Information

互信息用来描述两个分布之间的关联程度。
在这里插入图片描述
X Y交换位置,互信息大小不变。

如果X Y独立,则互信息为0。

熵是用“,”,互信息用“;”。
在这里插入图片描述

venn图表示熵和互信息的关系

在这里插入图片描述

熵的链式法则

定义:
在这里插入图片描述
如果各个变量之间独立:
在这里插入图片描述
在这里插入图片描述

信息的链式法则

条件互信息
在这里插入图片描述
信息的链式法则可以将复杂的多变量的互信息转化为简单的变量少的:
在这里插入图片描述

Conditional Relative Entropy

条件相对熵定义:
在这里插入图片描述
条件相对熵的链式法则,即先求x的相对熵,再求在x条件下y的条件相对熵,相加:
在这里插入图片描述

某些性质

相对熵的非负的:
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值