**
python pyecharts的基础使用
**
# 导包
from pyecharts.charts import Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts,VisualMapOpts
# 创建折线图对象
line = Line()
# 给折线图对象添加X轴数据
line.add_xaxis(["中国", "美国", "英国"])
# 给涉嫌图对象添加y轴数据
line.add_yaxis("GDP", [30, 20, 10])
# 全局配置项
line.set_global_opts(
title_opts=TitleOpts("GDP展示", pos_left="center", pos_bottom="1%"),
legend_opts=LegendOpts(is_show=True),
toolbox_opts=ToolboxOpts(is_show=True),
visualmap_opts=VisualMapOpts(is_show=True)
)
# 使用render方法,将代码生成图像
line.render()
运行结果:
pyecharts官方地址
https://pyecharts.org/#/zh-cn/global_options
地图
import json
from pyecharts.charts import *
from pyecharts.options import *
# 读取疫情数据
f = open("D:/疫情.txt", "r", encoding="UTF-8")
data = f.read()
# 关闭文件
f.close()
# json 转python字典
data_dict = json.loads(data)
province_data_list = data_dict["areaTree"][0]["children"]
# 组装每个省份的数据和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []
for province_data in province_data_list:
province_name = province_data["name"] # 省份名称
province_confirm = province_data["total"]["confirm"] # 确诊人数
data_list.append((province_name, province_confirm))
print(data_list)
# 创建地图对象
map = Map()
# 添加地图数据
map.add("各省份确诊人数", data_list, "china")
# 设置地图全局选项
map.set_global_opts(
title_opts=TitleOpts("全国确认地图"),
visualmap_opts=VisualMapOpts(
is_show=True, # 是否显示
is_piecewise=True, # 是否分段
pieces=[
{"min": 1, "max": 99, "lable": "1-99人", "color": "#CCFFFF"},
{"min": 100, "max": 999, "lable": "100-999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "1000-4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000-99999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000-99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
map.render("全国疫情地图.html")
运行如果:
网盘资料链接:https://pan.baidu.com/s/1KCKkV13ymltq9CMXE3qxJA?pwd=1234
提取码 :1234
自行下载所需数据
省级地图:
import json
from pyecharts.charts import *
from pyecharts.options import *
# 读取疫情数据
f = open("D:/疫情.txt", "r", encoding="UTF-8")
data = f.read()
# 关闭文件
f.close()
# json 转python字典
data_dict = json.loads(data)
cities_data_list = data_dict["areaTree"][0]["children"][3]["children"]
# 组装每个市份的数据和确诊人数为元组,并各个省的数据都封装入列表内
data_list = []
for cities_data in cities_data_list:
if cities_data["name"] != "境外输入":
cities_name = cities_data["name"] + "市" # 城市名称
cities_confirm = cities_data["total"]["confirm"] # 确诊人数
data_list.append((cities_name, cities_confirm))
else:
cities_name = cities_data["name"] # 城市名称
cities_confirm = cities_data["total"]["confirm"] # 确诊人数
data_list.append((cities_name, cities_confirm))
data_list.append(("济源市", 5))
print(data_list)
# 创建地图对象
map = Map()
# 添加地图数据
map.add("河南确诊人数", data_list, "河南")
# 设置地图全局选项
map.set_global_opts(
title_opts=TitleOpts("河南省确诊地图"),
visualmap_opts=VisualMapOpts(
is_show=True, # 是否显示
is_piecewise=True, # 是否分段
pieces=[
{"min": 1, "max": 99, "lable": "1-99人", "color": "#CCFFFF"},
{"min": 100, "max": 999, "lable": "100-999人", "color": "#FFFF99"},
{"min": 1000, "max": 4999, "lable": "1000-4999人", "color": "#FF9966"},
{"min": 5000, "max": 9999, "lable": "5000-99999人", "color": "#FF6666"},
{"min": 10000, "max": 99999, "lable": "10000-99999人", "color": "#CC3333"},
{"min": 100000, "lable": "100000+", "color": "#990033"},
]
)
)
map.render("河南疫情地图.html")
运行结果:
柱状图
# 动态柱状图
from pyecharts.charts import *
from pyecharts.options import *
# 使用bar 构建基础柱状图
bar = Bar()
# 添加x轴的数据
bar.add_xaxis(["中国", "美国", "英国"])
# 添加Y轴数据
bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position="right"))
# 反转x和y轴
bar.reversal_axis()
bar.render("柱状图.html")
运行结果:
时间线柱状图
# 时间线柱状图
from pyecharts.charts import *
from pyecharts.options import *
from pyecharts.globals import *
# 使用bar 构建基础柱状图
bar = Bar()
bar.add_xaxis(["中国", "美国", "英国"]) # 添加x轴的数据
bar.add_yaxis("GDP", [30, 20, 10], label_opts=LabelOpts(position="right")) # 添加Y轴数据
bar.reversal_axis() # 反转x和y轴
bar1 = Bar()
bar1.add_xaxis(["中国", "美国", "英国"]) # 添加x轴的数据
bar1.add_yaxis("GDP", [40, 30, 20], label_opts=LabelOpts(position="right")) # 添加Y轴数据
bar1.reversal_axis() # 反转x和y轴
bar2 = Bar()
bar2.add_xaxis(["中国", "美国", "英国"]) # 添加x轴的数据
bar2.add_yaxis("GDP", [50, 40, 30], label_opts=LabelOpts(position="right")) # 添加Y轴数据
bar2.reversal_axis() # 反转x和y轴
# 构建时间线对象
timeline = Timeline(
{"theme": ThemeType.LIGHT}# 设置主题
)
# 在时间线内部添加柱状图对象
timeline.add(bar, "1")
timeline.add(bar1, "2")
timeline.add(bar2, "3")
# 自动播放速度
timeline.add_schema(
play_interval=1000,
is_timeline_show=True,
is_auto_play=True,
is_loop_play=True
)
# 绘图使用时间线对象绘制图,不是用bar对象
timeline.render("时间线柱状图.html")
运行结果:
动态时间线柱状图
from pyecharts.charts import *
from pyecharts.options import *
from pyecharts.globals import *
# 读取数据
f = open("D:/1960-2019全球GDP数据.csv", "r", encoding="GB2312")
data_lines = f.readlines()
f.close()
# 删除第一条数据
data_lines.pop(0)
# 转换数据格式
data_dict = {}
for line in data_lines:
year = int(line.split(",")[0]) # 年份
country = line.split(",")[1] # 国家
gdp = float(line.split(",")[2]) # gdp数据
try:
data_dict[year].append([country, gdp])
except KeyError:
data_dict[year] = []
data_dict[year].append([country, gdp])
# 时间对象
timeline = Timeline(
{"theme": ThemeType.LIGHT}
)
# 年份排序
sorted_year_list = sorted(data_dict.keys())
for year in sorted_year_list:
# 针对gdp 排序
data_dict[year].sort(key=lambda element: element[1], reverse=True)
# 取本年份排名前八
year_data = data_dict[year][0:8]
x_data = []
y_data = []
for country_gdp in year_data:
x_data.append(country_gdp[0]) # x轴国家
y_data.append(country_gdp[1] / 100000000) # y轴GDP
# 构建柱状图对象
bar = Bar()
x_data.reverse()
y_data.reverse()
bar.add_xaxis(x_data)
bar.add_yaxis("GDP()亿", y_data, label_opts=LabelOpts(position="reght"))
bar.reversal_axis() # 反转x和y轴
# 设置每一个年份的标题
bar.set_global_opts(
title_opts=TitleOpts(title=f"{year}年全球前8GDP数据")
)
timeline.add(bar,str(year))
# 自动播放速度
timeline.add_schema(
play_interval=1000,
is_timeline_show=True,
is_auto_play=True,
is_loop_play=False # 是否自动播放
)
timeline.render("1968-2019全球GDP前8.html")
运行结果: