[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

本文详细讲解了网络流中的最大流问题,包括Ford-Fulkerson、Edmond-Karp和Dinic三种算法。通过对增广路、分层和当前弧优化的概念解析,配合代码示例,阐述了每种算法的工作原理和效率。最后,探讨了Dinic算法如何通过多路增广和当前弧优化提高效率,降低了复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[洛谷P3376题解]网络流(最大流)的实现算法讲解与代码

更坏的阅读体验

定义

对于给定的一个网络,有向图中每个的边权表示可以通过的最大流量。假设出发点S水流无限大,求水流到终点T后的最大流量。

起点我们一般称为源点,终点一般称为汇点

内容前置

1.增广路

​ 在一个网络源点S汇点T的一条各边剩余流量都大于0(还能让水流通过,没有堵住)的一条路。

2.分层

​ 预处理出源点到每个点的距离(每次寻找增广路都要,因为以前原本能走的路可能因为水灌满了,导致不能走了).作用是保证只往更远的地方放水,避免兜圈子或者是没事就走回头路(正所谓人往高处走水往低处流).

3.当前弧优化

​ 每次增广一条路后可以看做“榨干”了这条路,既然榨干了就没有再增广的可能了。但如果每次都扫描这些“枯萎的”边是很浪费时间的。那我们就记录一下“榨取”到那条边了,然后下一次直接从这条边开始增广,就可以节省大量的时间。这就是当前弧优化

具体怎么实现呢,先把链式前向星的head数组复制一份,存进cur数组,然后在cur数组中每次记录“榨取”到哪条边了。

[#3 引用自](Dinic当前弧优化 模板及教程 - Floatiy - 博客园 (cnblogs.com))

解决算法

Ford-Fulkerson 算法(以下简称FF算法)

FF算法的核心是找增广路,直到找不到为止。(就是一个搜索,用尽可能多的水流填充每一个点,直到没有水用来填充,或者没有多余的节点让水流出去)。

但是这样的方法有点基于贪心的算法,找到反例是显而易见的,不一定可以得到正解。

为了解决这种问题,我们需要一个可以吃后悔药的方法——加反向边

原本我们的DFS是一条路走到黑的,现在我们每次进入一个节点,把水流送进去,同时建立一个权值与我们送入的水流量相等,但是方向相反的路(挖一条路让水流能够反向流回来,相当于给水流吃一颗后悔药)。

我们给了FF算法一颗后悔药之后就可以让他能够找到正确的最大流。

Ford-Fulkerson算法的复杂度为 O ( e × f ) O(e \times f) O(e×f) ,其中 e e e 为边数, f f f为最大流

上代码。

#include <iostream>
#include <cstring>
using namespace std;

#define INF 0x3f3f3f3f3f3f3f3f

typedef long long ll;

// Base
const int N= 256;
const int M= 8192*2;
// End

// Graph
int head[N],nxt[M],to[M];
ll dis[M];
int p;

inline void add_edge(int f,int t,ll d)
{
    to[p]=t;
    dis[p]=d;
    nxt[p]=head[f];
    head[f]=p++;
}
// End

int n,m,s,t;

// Ford-Fulkerson

bool vis[N];



ll dfs(int u,ll flow)//u是当前节点 , flow是送过来的水量
{
    if(u==t)// End,水送到终点了
        return flow;
    vis[u]=true;

    for(int i=head[u];i!=-1;i=nxt[i])
    {
        ll c;//存 送水下一个节点能通到终点的最大流量
        if(dis[i]>0 //如果水流还能继续流下去
            && !vis[to[i]]  //并且要去的点没有其他的水流去过
            && (c=dfs(to[i],min(flow,dis[i])))!=-1//根据木桶效应,能传给下一个节点的水量取决于当前节点有的水量与管道(路径)能够输送的水量的最小值
            //要保证这条路是通的我们才可以向他送水,不然就是浪费了
            ) {
                dis[i]-=c;//这个管道已经被占用一部分用来送水了,需要减掉
                dis[i^1]+=c;//给他的反向边加上相同的水量,送后悔药
                //至于为什么是这样取出反向边,下面有讲
                return c;
        }
    }
    return -1;
}
// End
int main()
{
    ios::sync_with_stdio(true);
    
    memset(head,-1,sizeof(head));// init

    cin>>n>>m>>s>>t;
    for(int i=1;i<=m;i++)
    {
        int u,v,w;cin>>u>>v>>w;
        add_edge(u,v,w);
        add_edge(v,u,0);//建立一条暂时无法通水的反向边(后面正向边送水后,需要加上相同的水量)
        //第一条边 编号是 0 ,其反向边为 1, 众所周知的 奇数^1=奇数-1, 偶数^1=偶数+1 ,利用这种性质 ,我们就可以很快求出反向边,或者反向边得出正向边(这里说的正反只是相对)
    }

    //Ford-Fulkerson
    ll ans = 0;
    ll c;
    //          假设我们的水无限多
    while((c=dfs(s,INF)) != -1) //把源点还能送出去的水全部都送出去,直到送不到终点
    {
        memset(vis,0,sizeof(vis)); //重新开始送没送出去的水
        ans+=c;//记录总的水量
    }
    cout<<ans<<endl;
    return 0;
}

可以看出效率比较低,我这里开了O2也过不了模板题。

Edmond-Karp 算法(以下简称EK算法)

上面FF算法太慢了,原因是因为FF算法太死脑筋了,非要等现在节点水灌满了,才会灌其他的(明明有一个更大的水管不灌)。另外他有时候还非常谦让,等到明明走到了,却要返回去等别人水灌好,再灌自己的。

其实,EK算法便是FF算法的BFS版本。复杂度为 O ( v × e 2 ) O(v \times e^2) O(v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值