三种坐标系的总结介绍:
https://blog.csdn.net/ywjatjd/article/details/62896201大地坐标-空间直角坐标相互转换部分
转自:http://blog.sina.com.cn/s/blog_7cdaf8b60102wksh.html
WGS84坐标系的参数:
已知量:a,f 可以求解出b与e
长半轴:a=6378137
WGS84椭球扁率:f=1/298.257223563
椭球扁率f=(a-b)/a
椭球第一曲率半径(或叫偏心率):e*e=(a*a-b*b)/a*a
第二曲率半径:e2*e2=(a*a-b*b)/b*b
1. 大地坐标系转换为空间直角坐标系(BLH→XYZ)
在相同的基准下,将大地坐标系转换为空间直角坐标系。公式为:
2. 空间直角坐标系转换为大地坐标系( XYZ → BLH )
在相同的基准下,将大地坐标系转换为空间直角坐标系。公式为:

利用该式计算有一个问题:后两式中有交叉变量,因此需要进行处理。
Ⅰ迭代算法
①利用下式求出B的初值。
②利用B的初值求出H和N的初值,再次求定B的值。
Ⅱ直接算法
公式如下:
大地坐标-平面直角坐标相互转换部分
转自:http://blog.sina.com.cn/s/blog_7cdaf8b60102wksi.html
空间大地坐标系与平面直角坐标系的转换采用数学投影的方法,我国采用的是高斯投影,故转换实为高斯投影正反算的过程。
1. 高斯投影正算(BL →xy)
m = e2*cos(B),e2是第二曲率半径
t/2*N*L*L*cosB*cosB