### 薄板样条插值用于点云数据
对于点云数据应用薄板样条插值,可以采用Fitzgerald Archibald的Matlab代码实现[^1]。该方法旨在通过给定的一组控制点及其对应的变形位置,在保持整体形状平滑的前提下计算新的坐标。
#### 使用Python实现薄板样条插值
下面是一个基于PyTorch框架下的Python版本实现:
```python
import numpy as np
import torch
def compute_kernel_matrix(X, Y=None):
"""
计算径向基核矩阵K(x,y)=||x-y||^2*log(||x-y||),其中X,Y表示输入特征点集合。
参数:
X (Tensor): 输入源点集 [batch_size, num_points, dim]
Y (Tensor): 可选的目标点集,默认为None即Y=X
返回:
Tensor: 核矩阵 K [batch_size, num_points_X, num_points_Y]
"""
if Y is None:
Y = X.clone()
batch_size, n_x, d = X.shape
_, n_y, _ = Y.shape
# 扩展维度以便广播操作
XX = X.unsqueeze(2).expand(batch_size, n_x, n_y, d)
YY = Y.unsqueeze(1).expand(batch_size, n_x, n_y, d)
dist_sq = ((XX - YY)**2).sum(-1) # 平方欧氏距离
eps_mask = dist_sq != 0 # 防止log(0)错误发生
log_dist = torch.zeros_like(dist_sq)
log_dist[eps_mask] = torch.log(dist_sq[eps_mask]) * dist_sq[eps_mask]
return log_dist
def thin_plate_spline(source, target):
"""
应用薄板样条变换模型求解参数w和a.
参数:
source (Tensor): 原始点的位置 [batch_size, num_points, dims]
target (Tensor): 对应目标点的位置 [batch_size, num_points, dims]
返回:
Tuple[Tensor,Tensor]: w系数与线性部分权重(a,bias)
"""
num_batch = source.size()[0]
num_point = source.size()[1]
ones = torch.ones(num_batch, num_point, 1).float().cuda() \
if torch.cuda.is_available() else torch.ones(num_batch, num_point, 1).float()
p = torch.cat([ones, source], 2) # 形成增广矩阵 [bn, pn, 3][^2]
L_top_left = compute_kernel_matrix(source)
zeros = torch.zeros((num_batch, 3, 3)).to(p.device)
bottom_right = torch.inverse(torch.bmm(p.transpose(1, 2), p))
top_right_and_bottom_left = torch.bmm(L_top_left, p)
L = torch.cat([
torch.cat([L_top_left, top_right_and_bottom_left], dim=2),
torch.cat([top_right_and_bottom_left.transpose(1, 2), bottom_right], dim=2)
], dim=1)
v = torch.cat([target, torch.zeros((num_batch, 3, 2)).to(target.device)], dim=1)
params = torch.solve(v.unsqueeze(-1), L)[0].squeeze(-1)
w = params[:, :num_point, :]
a = params[:, num_point:, :]
return w, a
def apply_tps_transform(w, a, points_to_warp):
"""
将已学习到TPS参数应用于新点上执行转换.
参数:
w (Tensor): 权重项 [batch_size, control_points, output_dims]
a (Tensor): 线性组合系数 [batch_size, linear_terms, output_dims]
points_to_warp (Tensor): 待变换的新点 [batch_size, query_points, input_dims]
返回:
Tensor: 经过TPS变换后的点 [batch_size, query_points, output_dims]
"""
kernel_vals = compute_kernel_matrix(points_to_warp, source=w.new_zeros(*points_to_warp.shape[:-1], device=w.device))
warped_coords = torch.matmul(kernel_vals, w) + torch.matmul(points_to_warp, a[:, :-1, :]) + a[:, [-1], :]
return warped_coords
```
此段代码实现了完整的薄板样条插值过程,包括构建径向基函数核矩阵、解决最小二乘问题获得变换参数以及最终的应用这些参数完成实际的空间扭曲效果。