相关内容
SMO算法求解支持向量机(二)
用SMO算法求解支持向量机(SVM)pythony源代码(三)
支持向量机是万能的分类器算法,简称SVM。一般来说他是二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。
一 理解SVM基本原理
1,SVM的基本概念
我们的目的是根据几何间隔计算“最大间隔”。
1.1 函数间隔
对任何一个数据点(x,y),|wT*x+b|能够表示点x到距离超平面wT*x+b=0的远近,而wT*x+b的符号与类标记y的符号是否一致可判断是否分类正确。所以,可用y(wT*x+b)的正负性判定或表示分类的正确性(为正才正确),引出了函数间隔(functional margin)的概念。定义函数间隔为:
而超平面所有样本点(xi,yi)的函数间隔最小值便为超平面关于训练数据集的函数间隔: mini (i=1,…n)
实际上,函数间隔就是几何上点到面的距离公式。
1.2 几何间隔
假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本x到分类间隔的距离,如下图所示:
数据点到超平面的几何间隔定义为: