支持向量机的基本原理(一)

本文介绍了支持向量机(SVM)的基本原理,包括函数间隔、几何间隔和最大间隔分类器的概念。SVM旨在寻找最大间隔的超平面以实现分类,通过几何间隔确保分类的确信度。当面临非线性可分情况时,引入了松弛因子ξi和惩罚项,以容忍部分样本点偏离超平面,形成软间隔SVM。通过对偶问题求解,SVM可以利用拉格朗日乘子和核函数进行优化,有效地处理线性和非线性数据。
摘要由CSDN通过智能技术生成

相关内容
SMO算法求解支持向量机(二)
用SMO算法求解支持向量机(SVM)pythony源代码(三)
支持向量机是万能的分类器算法,简称SVM。一般来说他是二分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解。

一 理解SVM基本原理

1,SVM的基本概念

我们的目的是根据几何间隔计算“最大间隔”。

1.1 函数间隔

对任何一个数据点(x,y),|wT*x+b|能够表示点x到距离超平面wT*x+b=0的远近,而wT*x+b的符号与类标记y的符号是否一致可判断是否分类正确。所以,可用y(wT*x+b)的正负性判定或表示分类的正确性(为正才正确),引出了函数间隔(functional margin)的概念。定义函数间隔为:
这里写图片描述

而超平面所有样本点(xi,yi)的函数间隔最小值便为超平面关于训练数据集的函数间隔: mini (i=1,…n)
实际上,函数间隔就是几何上点到面的距离公式。
1.2 几何间隔

假定对于一个点 x ,令其垂直投影到超平面上的对应点为 x0 ,w 是垂直于超平面的一个向量,为样本x到分类间隔的距离,如下图所示:
这里写图片描述
数据点到超平面的几何间隔定义为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值