深度学习
文章平均质量分 80
qq_16540387
这个作者很懒,什么都没留下…
展开
-
[译]用于语义分割的全卷积网络 FCN(UC Berkeley)
摘要卷积网络在特征分层领域是非常强大的视觉模型。 我们证明了经过端到端、像素到像素训练的卷积网络超过语义分割中最先进的技术。 我们的核心观点是建立“全卷积”网络,输入任意尺寸,经过有效的推理和学习产生相应尺寸的输出。 我们定义并指定全卷积网络的空间,解释它们在空间范围内预测每个像素所属的类别和获取与先验模型联系的应用。 我们改编当前的分类网络(AlexNet,the VGG net , an翻译 2017-12-02 01:09:58 · 1226 阅读 · 0 评论 -
拉普拉斯特征映射降维
一 定义拉普拉斯特征映射是通过构建邻接矩阵为W的图来重构流行数据的局部结构和特征。我们的额目的是让相似的数据样例i和j,降维后的目标子空间尽量相近。二 目标函数最终计算 拉普拉斯矩阵L的特征向量和特征值 Ly= λDy 其中 邻接矩阵W为 对角矩阵D是图的度矩阵 L=D−W为图的拉普拉斯矩阵三 步骤使用时算法具体步骤为:步骤1:构建图使用某一种方法来...转载 2018-08-10 14:53:06 · 3504 阅读 · 0 评论 -
Faster RCNN 原理详解
Faster RCNN其实可以分为4个主要内容:Conv layers。作为一种CNN网络目标检测方法,Faster RCNN首先使用一组基础的conv+relu+pooling层提取image的feature maps。该feature maps被共享用于后续RPN层和全连接层。Region Proposal Networks。RPN网络用于生成region proposals。该层通过...转载 2018-08-10 14:58:07 · 252 阅读 · 0 评论 -
SSD目标检测 原理详解
一 SSD具有如下主要特点:从YOLO中继承了将detection转化为regression的思路,一次完成目标定位与分类基于Faster RCNN中的Anchor,提出了相似的Prior box;加入基于特征金字塔(Pyramidal Feature Hierarchy)的检测方式,即在不同感受野的feature map上预测目标二 SSD/YOLO区别:YOLO在卷积...原创 2018-08-10 15:13:02 · 8646 阅读 · 0 评论 -
YOLOv2 论文
1.Batch NormalizationCNN在训练过程中网络每层输入的分布一直在改变, 会使训练过程难度加大,但可以通过normalize每层的输入解决这个问题。新的YOLO网络在每一个卷积层后添加batch normalization,通过这一方法,mAP获得了2%的提升。batch normalization 也有助于规范化模型,可以在舍弃dropout优化后依然不会过拟合。...转载 2018-08-10 15:54:31 · 323 阅读 · 0 评论 -
ResNet的理解
1.ResNet出现的意义随着网络的加深,因为存在梯度消失和梯度爆炸问题,容易出现训练集准确率下降的现象,我们可以确定这不是由于Overfit过拟合造成的(过拟合的情况训练集应该准确率很高);所以作者针对这个问题提出了一种全新的网络,叫深度残差。2.残差指的是什么?其中ResNet提出了两种mapping:一种是identity mapping,指的就是图1中”弯弯的曲线”,另一种...转载 2018-08-11 15:27:09 · 2372 阅读 · 0 评论 -
《You Only Look Once: Unified, Real-Time Object Detection》论文理解
一 概论作者提出了一种新的物体检测方法YOLO。YOLO之前的物体检测方法主要是通过region proposal产生大量的包含待检测物体的potential bounding box,再用分类器去判断每个bounding box 中是否含有物体,所属类别等信息,之后再改善bounding boxes,消除重复目标,基于整个场景对boxes进行打分。该类方法,如R-CNN,Fast-R-CNN...转载 2018-08-07 22:51:06 · 207 阅读 · 0 评论 -
非极大值抑制(Non Maximum Suppression)
目标检测中,NMS被用于后期的物体边界框去除中.NMS 对检测得到的全部 boxes 进行局部的最大搜索,以搜索某邻域范围内的最大值,从而滤出一部分 boxes,提升最终的检测精度.NMS :输入:检测到的Boxes(同一个物体可能被检测到很多Boxes,每个box均有分类score)输出:最优的Box.过程:去除冗余的重叠 Boxes,对全部的 Boxes 进行迭...转载 2018-08-07 22:55:12 · 208 阅读 · 0 评论 -
Focal Loss for Dense Object Detection
1 背景现有的最好的目标检测器是基于两阶段的目标检测算法。如流行的R-CNN结构,第一个stage生成一系列候选目标框位置,第二阶段使用CNN对每个候选框进行前景或背景的分类。经过一系列发展,两阶段目标检测算法在精度上已经了很大的提升。 既然这样,那么我们不禁要问:是什么原因造成了两阶段检测器的精度比单阶段的检测要好? 本文根据这个问题从一个方面进行了深入探究讨论。2 问题分析作者认...原创 2018-08-19 16:48:24 · 251 阅读 · 0 评论 -
Mask R-CNN简介
一 概述Mske r-cnn是基于faster rcnn 提出来的一个网络架构,主要完成了目标个体的语义分割。论文的思路主要是对原有的faster rcnn进行了扩充,增加了一个分支对现有目标进行预测。 二 主要特点强化的基础网络,通过 ResNeXt-101+FPN 用作特征提取网络,达到 state-of-the-art 的效果。 ROIAlign解决对齐的问题。Lo...原创 2018-08-19 17:53:41 · 2103 阅读 · 0 评论 -
R-FCN 简介
一背景在目标识别领域,长久以来存在两个矛盾: 分类网络的位置不敏感性:对于分类任务而言,我们希望随着某个目标在图片中不断的移动,我的网络仍然可以准确的将你区分为对应的类别。 实验表明,深的全卷积网络能够具备这个特性,如ResNet-101等。 检测网络的位置敏感性:对于检测任务而言,我们希望可以准确的输出目标所在的位置值。也就是随着某个目标的移动,我的网络希望能够和它一起移动,仍然能够准...原创 2018-08-20 23:14:35 · 6162 阅读 · 0 评论 -
Light-Head R-CNN 简介
一背景一般而言,两阶段检测器在速度上有优势,在速度上相比于单阶段检测器会稍慢一点,所以,Light-Head R-CNN的设计初衷是两阶段的物体检测器也可以做的更快,而且在精度上尽可能的提高。二 对比分析 Faster R-CNN 和R-FCN在小模型上不够快的原因。Faster R-CNN 用两个厚重的fc(或者resnet 的第5个stage)做proposal的预测,...原创 2018-08-21 10:13:22 · 362 阅读 · 0 评论 -
理解IOU、precision、recall、AP、mAP的含义
一 理解IOUIOU是由预测的包围盒与地面真相包围盒之间的重叠区域(交集),除以它们之间的联合区域(并集),其中P代表预测框,gt代表真值框: 二理解precision(查准率)、recall(查全率)首先precision、recall是针对一类内的所有图片来说的。接下来举个例子。 例如,使用训练好的模型得到所有测试样本的confidence score,每一类(如car)...原创 2018-08-21 18:13:19 · 14540 阅读 · 3 评论 -
用captchac框架生成验证码
#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Sun Mar 25 19:06:46 2018@author: zlg"""from captcha.image import ImageCaptcha#验证码生成框架import numpy as npimport matplotlib.pyplot as pl...原创 2018-03-25 21:55:37 · 837 阅读 · 0 评论 -
WARNING:root:could not open file '/etc/apt/sources.list.d
错误提示:WARNING:root:could not open file '/etc/apt/sources.list不小心把源文件删除了,不能更新,下载,和卸载软件了。搞了半天实在无解,最后,拷了同学的sources.list文件,放到原处,解决。错误提示:WARNING:root:could not open file '/etc/apt/sources.list.d/mys...原创 2018-03-20 21:02:18 · 11620 阅读 · 1 评论 -
深度学习目标检测模型发展过程:R-CNN Fast R-CNN Faster R-CNN R-FCN
一 R-CNN 模型如果要拟人化比喻,那 R-CNN 肯定是 Faster R-CNN 的祖父了。换句话说,R-CNN 是一切的开端。R-CNN,或称 Region-based Convolutional Neural Network,其工作步骤如下:1.借助一个可以生成约 2000 个 region proposal 的「选择性搜索」(Selective Search)算法,R-CNN 可以对输入原创 2017-12-25 14:41:29 · 1156 阅读 · 0 评论 -
《神经网络和深度学习》之神经网络基础(第二周)课后作业——神经网络思维的逻辑回归
欢迎来到你的第一个编程作业,在这次作业中你将会用逻辑回归去识别一个猫。并且在这次作业中你将会用神经网络的思维去一步一步的去解决这个问题和磨练你的深度学习的直觉。说明:在你的代码中不能使用for或while循环,除非说明明确要你这么做。你将会学习到:1.建立一个学习算法的一般结构,包括初始化参数计算代价函数和它的梯度使用最优化算法(梯度下降)2.用正确的顺序将上面原创 2018-01-30 01:40:59 · 3908 阅读 · 1 评论 -
《神经网络和深度学习》之神经网络基础(第二周)课后作业——Python与Numpy基础知识
1 用numpy 建立基本函数1.1 s型函数,np.exp()# GRADED FUNCTION: basic_sigmoidimport mathdef basic_sigmoid(x): """ Compute sigmoid of x. Arguments: x -- A scalar Return: s -- s原创 2018-01-30 01:41:28 · 1859 阅读 · 0 评论 -
《神经网络和深度学习》之神经网络基础(第二周)课后作业——一个隐藏层的平面数据分类
欢迎来到第三周的课程,在这一周的任务里,你将建立一个只有一个隐含层的神经网络。相比于之前你实现的逻辑回归有很大的不同。你将会学习一下内容:用一个隐含层的神经网络实现一个二分类。利用非线性的激活函数单元。计算交叉熵损失函数。实现向前传播和向后传播。1 函数包# Package importsimport numpy as npimport matplotlib.pyplot as pl原创 2018-02-13 00:08:54 · 939 阅读 · 0 评论 -
《tensorflow实战》之实现自编码器(三)
一.概述早年学者研究稀疏编码(sparse coding)时,他们收集了大量的黑白风景照,并且从中提取了许多16*16的图像碎片,他们发现几乎所有的图片碎片都可以由64种正交的组合得到,并且组合出一张图片需要的边的数量是很少的,即是稀疏的。 自编码器,顾名思义,既可以用自己的高维特征编码自己。自编码也是一种神经网络,他的输入和输出是一致的,他借助稀疏编码的思想,目标是使用稀疏的的一些高维特征...原创 2018-03-15 12:08:06 · 395 阅读 · 0 评论 -
《tensorflow实战》之实现softmax pegression识别手写体(一)
一 概述1.数据集minist有55000个样本,测试集有10000个样本,验证集有5000个样本,每个样本都有标签。每张图片是28*28的灰度图像,所以说每个样本有28*28=784维的特征。数据集总的特征为55000*784,标签是一个10维的向量。2.softmax pegression算法工作原理:将判断为某类的特征相加,然后将这些特征转化为判定这是一类的的概率。 ...原创 2018-03-15 20:53:58 · 228 阅读 · 0 评论 -
《tensorflow实战》之实现多层感知器(二)
一 概念介绍理论研究表明,神经网络隐含层,层数越多,所需要的隐含节点可以越少。1.过拟合有一种方法叫Dropout,在使用复杂的卷积神经网络训练图像数据时尤其有效,简单说,就是将神经网络某一层的输出节点数据随机丢弃一部分。实质上等于创造出了很多新的随机样本,通过增大样本量、减少特征数量来防止过拟合。2.调参拿SGD来举例,不同的学习速率可能会有不同的局部最优解。Adag...原创 2018-03-15 23:11:08 · 287 阅读 · 0 评论 -
A-Fast-RCNN:Hard Positive Generation via Adversary for Object Detection
一 摘要这些近年来的建立在从ImageNet分类的任务中成功学到的强大的深层特征,因此,物体检测领域取得了显著地进步。最近的研究集中在物体检测系统主要有三个方向。第一个方向依赖于改变这些网络的基础架构。中心思想是使用更深层次的网络不仅可以导致分类改进,而且可以导致目标检测性能提高。最近在这方面的一些工作包括ResNet,Inception-ResNet和ResNetXt 。第二个研究领...原创 2018-03-02 16:40:12 · 527 阅读 · 0 评论 -
《tensorflow实战》之实现简单的卷积网络(四)
一 基本概念我们有一张的大小为1000*1000的的灰度图像,那么一张图片就有100万个像素点,输入数据的唯独也就是100万。如果我们连接一个相同大小的隐含层(100万),那么将产生100万×100万=一亿个连接。仅仅一个全连接层就超出了普通计算机的计算能力。所以,我们必须要减少训练的权重数量。减低计算的复杂度,而且,过多的连接会产生严重的过拟合,会减低模型的泛化性能。1.感受野图...原创 2018-03-16 16:09:53 · 302 阅读 · 0 评论 -
《tensorflow实战》之实现复杂的卷积网络(五)
一 基本概念1. 正则化L1正则化和L2正则化的定义:L1正则化是指权值向量w中各个元素的绝对值之和,通常表示为||w||1。L2正则化是指权值向量w中各个元素的平方和然后再求平方根(可以看到Ridge回归的L2正则化项有平方符号),通常表示为||w||2。L1正则化和L2正则化的作用L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择,大部分无用特...原创 2018-03-17 23:08:08 · 492 阅读 · 0 评论 -
TensorFlow函数:tf.nn.in_top_k()
in_top_k(predictions, targets, k, name=None)函数的输入: predictions:预测的输出结果,预测矩阵的大小为样本数×类别的个数的二维矩阵。换句话说,矩阵的值就是每个样本属于各个类别的概率值。 targets:真实标注的类别值,大小为样本个数,即每个样本对应一个唯一的类别。 k:当k=1时,即就是某一样本预测属于某一最大概率的类,与该样本真...原创 2018-03-18 15:47:46 · 497 阅读 · 0 评论 -
《tensorflow实战》之实现AlexNet网络(六)
一 AlexNet网络结构及特点1.AlexNet网络结构AlexNet有8个需要训练的层(不包括池化层和LRN层),前5层为卷积层后3层为全连接层。AlexNet最后一层是有1000类输出的softmax层用做分类。其中LRN层出现在第1个和第2个卷积层后,最大池化层出现在第1,第2,第5个卷基层后。relu激活函数则运用在这8层每一层的后面。 2.AlexNet网络技术要...原创 2018-03-23 17:16:21 · 816 阅读 · 0 评论 -
《tensorflow实战》之实现VGGNet网络(七)
一 VGGNet网络结构及特点1.网络结构VGGNet拥有5段卷积层,每一段内有2-3个卷积层,每段尾都会连接一个最大池化层用来缩小图片尺寸。每一段卷积层内的卷积核数目都相同,越靠后卷积核和数目越多。64-128-256-12-512。 其中,两个连在一起的3*3的卷积核相当于一个5×5的像素产生关联,也可以说感受野大小为5×5,这样的设计使得参数数目变为一半,而且引入了更多的非线性(每...原创 2018-03-23 18:05:37 · 304 阅读 · 0 评论 -
VideoWriter 细节
VideoWriterCV_FOURCC('P', 'I', 'M', '1') = MPEG-1 codecCV_FOURCC('M', 'J', 'P', 'G') = motion-jpeg codecCV_FOURCC('M', 'P', '4', '2') = MPEG-4.2 codec CV_FOURCC('D', 'I', 'V', '3') = MPEG-4.3 code...转载 2019-06-23 12:35:08 · 1296 阅读 · 0 评论