概率论中独立事件的讨论

开始之前,我们要明确描述一个问题的概率问题时,必须准确把握这个"样本空间",概率书上一般称这个为所有可能的结果构成的集合为"样本空间"。如果甲在描述的一个问题的样本空间为A,它基于这个A的出一个概率P_{1},而乙在另外一个不同的样本空间B中得出一个概率P_{2},那么讨论P_{1}P_{2}的关系需要谨慎,要不然就是驴唇不对马嘴。

1. 条件概率

学习条件概率的时候会碰到下面的条件概率公式:

P(E|F)=\frac{P(EF)}{P(F)}, P(F)>0           

这个式子的意思就是F事件发生的条件下,E事件发生的概率。从字面上,主观的感受觉这个是很容易被理解的一个公式。要深刻理解这个条件概率公式的话,是需要深刻理解这里面讨论概率问题时"样本空间"的切换。用“维恩图”来理解更容易掌握实质:

P(E|F)=\frac{S_{red}}{S_{F}},即条件概率P(E|F)等于红色部分面积(EF相交部分面积)除以F事件面积(绿色+红色面积)

也就是说求P(E|F)时候的样本空间是以F事件的样本空间为参考的,这与P(E)=\frac{S_{E}}{S_{A}}(即E事件面积除以A原始样本空间面积)。

也就是说P(E|F)P(E)两个概率所参考的样本空间完全不一样:

P(E)是基于原始样本空间A,P(E|F)是基于新的样本空间F。

2. 事件独立

定义对于事件E和事件F,如果满足下面的公式,那么称它们是独立的。若两个事件E和F不独立,则称它们是相依的,或者相互不独立

P(EF)=P(E)P(F)

因此如果事件E和事件F独立,那么肯定满足下满的式子:

P(E)=P(E|F)

观察上面的维恩图,可知:

\frac{S_{red}}{S_{F}}=\frac{S_{E}}{S_{A}}

这也就说明了事件F的样本空间对事件E样本空间的切割后这部分(即形成维恩图中红色部分空间)在F中的比例和事件E在原来总体样本空间A中的比例是一致的,实际上这种"同比例切割"的特性,是确定F与E是否独立的一个标志,如果F事件样本空间同比例切割E事件空间,那么E和F就是独立的。这样子的描述和"F事件的发生并不影响E发生的概率,那么E和F就是独立的", 事实上这样子的描述在主观上有时候不是特别容易判断的。用"同比例切割"有时候更容易判断两个事件是否是独立的。相反的,不能同比例切割的话,那可以判断E和F是不独立的。

利用这个结论,观察上面这个维恩图,它告诉我们,E和F事件没有相交的部分,按照"同比例切割"的观点,F事件和E事件是"不独立"的! 当然也可以利用是否满足公式P(EF)=P(E)P(F)方式去验证独立性。 这个图告诉我们:

两个不相交的事件,反而是"相互不独立"的。除了一种情况,事件E不可能出现,也就是P(E)=0。

这给我们一种新的认识:世界上两个没有任何交集的人,却相互不独立。除非你不存在。

造成这种错觉的原因是,讨论问题的角度不一样,相交讨论的是两个事件的集合,而"独立性"与否讨论的是比例(也就是概率)的问题。另外,概率论中的"独立"都是特别针对概率值的影响的,而人的独立性讨论的是人格特征。概率论中只是借用了"独立"这个词,概念上被赋予了严格的数学意义。

例1. 从一副洗好的52张扑克牌里随机抽取一张牌,令E表示事件"抽取的牌为一张A",令F表示事件"抽取的牌为一张黑桃",那么E和F就是独立的。因为P(EF)=1/52,而P(E)=4/52且P(F)=13/52。

这个例子也可以用"同比例分割"的方法来判断。原始样本空间大小为52,事件E空间大小有4(因为有4张牌A),因此事件E在原来空间中的分割比例时4/52。 相交事件EF样本空间(既是牌A又是黑桃)1,事件F的样本空间很明显是13(因为有13张黑桃),因此,EF在F中的分割比例为1/13。4/52=1/13,因此是独立的。

例2. 掷两枚均匀的骰子,令E_{1}表示事件"骰子点数和为6",令F表示事件"第一枚骰子点数为4",那么

P(E_{1}F)=P({4,2})=\frac{1}{36}

P(E_{1})P(F)=\frac{5}{36}\times \frac{1}{6}=\frac{5}{216}

因此,E_{1}和F不独立。也可以用"同比例分割"法。E1F相交事件在F中分割的比例为1/6,而E1事件在原来空间的比例是5/36。

例2, 如果令E_{2}表示事件"骰子点数和为7",那么F和E_{2}是独立的。请自证。

需要强调的是,两个事件独立并不代表两个事件之间没有影响,影响这个词太笼统了,因为,影响这个词没有说具体什么影响。而概率论中,事件之间是否独立,它强调的是事件F的出现与否对事件E原来发生的概率是否有影响!它明确了影响什么!即便事件F对事件E产生其他影响,只要不影响E的概率,那就是"独立"!

  • 28
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 猴博士3小时概论指的是一篇在CSDN上发表的文章,内容主要讨论概率论在猴博士的研究领域的应用。 文章首先介绍了概率论的基本概念和原理,包括概率的定义、概率分布、期望值等。接着,猴博士提到了自己在研究使用概率论的情况。他在文章强调了概率论在他的实验的重要性,因为他的研究关注的是一种行为模式的演化,而这个演化过程包含了很多不确定性因素。 猴博士详细描述了他的实验设计和数据分析过程。他通过观察猴子在特定环境下不同行为的概率分布,得出了一些有关行为模式的结论。同时,他也利用概率论对实验数据进行统计推断,以确定结果的可靠性。 在文章的结尾,猴博士总结了他的研究成果,并提出了一些对未来研究的展望。他指出,概率论在行为模式研究领域的应用潜力巨大,可以帮助揭示复杂行为背后的规律和机制。他鼓励其他研究者也能在自己的领域尝试利用概率论的方法来进行研究。 总体而言,这篇文章向读者介绍了概率论在猴博士研究的应用,通过详细的实验和数据分析过程,展示了概率论的实际应用和研究成果。同时,文章也为其他研究者提供了借鉴和启发,鼓励他们在自己的研究探索概率论的潜力。 ### 回答2: 猴博士是一只聪明的猴子,非常喜欢玩概率论的游戏。在这个游戏,他在CSDN上花了3个小时的时间来研究概率论。 猴博士首先学习了概率的基本概念和公式,了解到概率是一种描述事件发生可能性的数学工具。他明白了概率的计算方法,可以通过事件的样本空间和有限事件的发生数来计算概率。 然后,猴博士开始学习组合与排列的概率。他学会了计算种类不同,但元素相同的排列和组合的数量,以及计算有限次试验某一事件发生的概率。 在接下来的学习,猴博士了解了条件概率独立事件的概念。他掌握了计算两个或多个事件同时发生的概率,以及在已知某一事件发生的条件下,其他事件发生的概率。 猴博士还学习了概率分布函数和期望值的计算方法。他了解了离散型和连续型随机变量的概率分布特征,以及如何通过概率密度函数或概率质量函数计算随机变量的期望值。 在最后的时间里,猴博士触及到了概率的应用领域。他了解了在统计学、金融学、工程学等领域概率论的应用,包括风险管理、贝叶斯推理和蒙特卡洛模拟等。 通过这3个小时的学习,猴博士对概率论有了初步的了解。他了解了概率的基本概念和计算方法,掌握了条件概率独立事件概率计算,了解了概率分布和期望值的计算,以及概率在实际应用的重要性。猴博士相信,在未来的研究,他会继续深入探索概率论的奥秘。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值