pytorch计算机视觉(Computer Vision)

PyTorch 在计算机视觉(Computer
Vision)中的应用广泛且高效,其动态计算图、丰富的生态系统和灵活的API使其成为研究和工业界的首选工具。以下是PyTorch在计算机视觉中的详细描述:

1. 环境配置与安装

安装PyTorch与torchvision:

pip install torch torchvision

torch:PyTorch核心库,提供张量操作和自动微分。

torchvision:计算机视觉专用库,包含数据集、模型和图像转换工具。

2. 数据准备与预处理

数据集加载:

  • 内置数据集(如CIFAR-10、ImageNet):
from torchvision import datasets
train_data = datasets.CIFAR10(root='data/', train=True, download=True)

自定义数据集:继承Dataset类,实现__len__和__getitem__方法。

  • 数据增强与转换:

使用torchvision.transforms进行图像预处理:

from torchvision import transforms
transform = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

开发小能手-roy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值