PyTorch 在计算机视觉(Computer
Vision)中的应用广泛且高效,其动态计算图、丰富的生态系统和灵活的API使其成为研究和工业界的首选工具。以下是PyTorch在计算机视觉中的详细描述:
1. 环境配置与安装
安装PyTorch与torchvision:
pip install torch torchvision
torch:PyTorch核心库,提供张量操作和自动微分。
torchvision:计算机视觉专用库,包含数据集、模型和图像转换工具。
2. 数据准备与预处理
数据集加载:
- 内置数据集(如CIFAR-10、ImageNet):
from torchvision import datasets
train_data = datasets.CIFAR10(root='data/', train=True, download=True)
自定义数据集:继承Dataset类,实现__len__和__getitem__方法。
- 数据增强与转换:
使用torchvision.transforms进行图像预处理:
from torchvision import transforms
transform = transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]