NYOJ 36 最长公共子序列(动态规划)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_16767427/article/details/79966658

想看题目原址,就点我。

最长公共子序列

时间限制:3000 ms  |  内存限制:65535 KB
难度:3
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6
来源
经典
上传者
hzyqazasdf

解题思路:

本题和POJ的1458题目一样,只不过输入有些不同,做法一样。另外南阳上用#include<iostream>必须要用cin,cout不然会报错。在POJ上不存在这样的情况。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define MAXN 1000+10
char s1[MAXN],s2[MAXN];
int MaxLen[MAXN][MAXN];
int main(){
	int N,length1,length2;
	scanf("%d",&N);
	while(N--)
	{
		scanf("%s%s",s1,s2);
		length1 = strlen(s1);
		length2 = strlen(s2);
		memset(MaxLen,0,sizeof(MaxLen));
		for(int i = 1; i <= length1; i++)
			for(int j = 1; j <= length2; j++){
				if(s1[i-1] == s2[j-1])
					MaxLen[i][j] = MaxLen[i-1][j-1] + 1;
				else
					MaxLen[i][j] = max(MaxLen[i][j-1],MaxLen[i-1][j]);
			}
		printf("%d\n",MaxLen[length1][length2]);
	}
	return 0;
}


阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页