激光点云SAM多角度点云分割

本文介绍了采用SAM3D模型进行多角度点云分割的方法,包括从点云生成正射影像,应用SAM模型进行多角度分割,以及通过双向合并和掩模集成获得最终结果。此技术克服了基于正射影像的单方向分割限制,适用于ALS、Geo-SLAM和TLS等场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        点云分割和分类不能仅采用基于正射影像(单方向)的方法,而应采用多方向的方法进行分割并生成不同角度的弧线。因此,我们仍然继续开发和增强全自动 SAM 模型的分割过程,然后为不同的点云使用提供预分类结果。

多角度解决方案

        基于正射影像的方法可能不考虑点云数据的复杂性并完全采用,相反,多角度解决方案可以完全捕获、分割和处理点云,以使用 SAM 进行自动监督分割。

然而,单角度可能只能在 ALS 的 DEM(机载激光雷达产生的数字高程模型)中完成,对于手持设备(如 Geo-SLAM 和 iPhone 扫描)和 TLS(地面激光雷达),正射影像方法可能无法覆盖所有点,仅覆盖最高的 z 点被覆盖。因此,采用和开发多角度解决方案比单一正射影像要好得多。

现有的点云多角度分割方案

SAM3D 解决方案示例

SAM3D 的总体方法和工作流程

SAM3D 的方法和工作流程

应用 SAM 模型从点云图像中提取 RGB

  • 捕获整个点云的多角度图像
  • 对每一帧的RGB图像使用SAM模型
  • 产生图像的像素级掩模

从分段结果中获取非重叠掩码

  • 由于 SAM 分段结果可能包含不同的版本和完整性(整个部分、子部分甚至不是它)
  • 一旦像素被多重掩模覆盖,就获得不重叠的掩模,同时将预测交并集(IoU)最高的掩模ID分配给该像素
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gis收藏家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值