点云分割和分类不能仅采用基于正射影像(单方向)的方法,而应采用多方向的方法进行分割并生成不同角度的弧线。因此,我们仍然继续开发和增强全自动 SAM 模型的分割过程,然后为不同的点云使用提供预分类结果。
多角度解决方案
基于正射影像的方法可能不考虑点云数据的复杂性并完全采用,相反,多角度解决方案可以完全捕获、分割和处理点云,以使用 SAM 进行自动监督分割。
然而,单角度可能只能在 ALS 的 DEM(机载激光雷达产生的数字高程模型)中完成,对于手持设备(如 Geo-SLAM 和 iPhone 扫描)和 TLS(地面激光雷达),正射影像方法可能无法覆盖所有点,仅覆盖最高的 z 点被覆盖。因此,采用和开发多角度解决方案比单一正射影像要好得多。
现有的点云多角度分割方案
SAM3D 解决方案示例
SAM3D 的总体方法和工作流程
SAM3D 的方法和工作流程
应用 SAM 模型从点云图像中提取 RGB
- 捕获整个点云的多角度图像
- 对每一帧的RGB图像使用SAM模型
- 产生图像的像素级掩模
从分段结果中获取非重叠掩码
- 由于 SAM 分段结果可能包含不同的版本和完整性(整个部分、子部分甚至不是它)
- 一旦像素被多重掩模覆盖,就获得不重叠的掩模,同时将预测交并集(IoU)最高的掩模ID分配给该像素