yolov5数据集txt解析

txt中的五个值,分别对应类,x.y的中心点,长宽 

<object-class> <x_center> <y_center> <width> <height>

二原先xml里面记录的的四个点的坐标,

(718+1003)/2 /1280(图片宽度)=0.672265..

这个在转换代码里面已经有了

YOLOv5(You Only Look Once version 5)是一种流行的物体检测算法,它通常需要标注的数据集包括图片文件和与其对应的标签信息。数据集中,图片信息存储为.jpg或.png格式,而标签信息通常是以.txt格式保存的,每个行对应一张图片的一组边界框注解。 将YOLOv5txt格式数据转换为XML(如Pascal VOC标准),可以分为以下几个步骤: 1. **理解格式**:YOLOv5 txt格式通常是这样的: ``` image_id x_center y_center width height class_name ``` 而VOC XML格式需要包含图像信息、对象信息、类别等详细内容。 2. **创建XML文件**: - 创建一个新的XML文件,例如`image_001.xml` - 标题(`<annotation>`)、源(`<source>`, `<size>`)、主图像(`<folder>`, `<filename>`)和时间戳(可选)作为XML文档的开始。 - 对于每一行数据,解析出图片ID(`<object>`的`@name`)、坐标 (`x`, `y`, `width`, `height`) 和类别(`class`), 添加到相应的元素中。 3. **编写脚本**: - 使用Python或其他编程语言,比如写一个循环遍历txt文件,读取每行数据并生成对应的XML结构。这里可以用正则表达式提取坐标和类别。 - 每次处理一行数据,创建一个新的`<object>`元素,并添加到`<annotation>`下的`<objects>`列表中。 4. **保存文件**: - 将XML数据写入文件,记得关闭文件句柄。 下面是一个简单的Python示例(假设已导入所需的库): ```python import os import xml.etree.ElementTree as ET def convert_yolov5_to_xml(txt_file, output_dir): # 创建根元素 annotation = ET.Element('annotation') # 遍历txt文件 with open(txt_file, 'r') as f: for line in f: # 解析每一行数据 img_id, *coords_and_class = line.strip().split() object_element = ET.SubElement(annotation, 'object') ET.SubElement(object_element, 'name').text = img_id.split('.')[0] # 图片ID bbox = ET.SubElement(object_element, 'bndbox') x, y, w, h = [int(float(coord)) for coord in coords_and_class[::2]] # 提取坐标 ET.SubElement(bbox, 'xmin').text = str(x) ET.SubElement(bbox, 'ymin').text = str(y) ET.SubElement(bbox, 'xmax').text = str(x + w) ET.SubElement(bbox, 'ymax').text = str(y + h) ET.SubElement(object_element, 'difficult').text = '0' # 设置难度为0 ET.SubElement(object_element, 'category').text = coords_and_class[-1] # 类别 # 构建文件路径 output_path = os.path.join(output_dir, f"{img_id}.xml") tree = ET.ElementTree(annotation) tree.write(output_path) # 使用函数 convert_yolov5_to_xml('labels.txt', 'output_voc') ``` 记得替换`labels.txt`为你实际的txt文件路径,以及指定输出目录。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值