ONNX模型可以通过使用深度学习框架的多卡并行化功能来实现GPU多卡推理。
以PyTorch为例,可以使用DataParallel或DistributedDataParallel来进行多卡并行化。
DataParallel可以在单个机器上的多个GPU上并行运行模型。它会自动将模型划分为多个块,每个块分别在不同的GPU上进行计算。使用DataParallel可以很容易地实现GPU多卡推理,只需要在模型前面加上DataParallel即可。
例如:
import torch.nn as nn
model = nn.DataParallel(model)
DistributedDataParallel则可以在多台机器上的多个GPU上并行运行模型。它需要更多的设置和配置,但可以实现更高效的分布式训练和推理。
另外,还可以通过使用ONNX Runtime等高性能推理引擎来实现GPU多卡推理。ONNX Runtime可以自动利用多个GPU进行并行计算,从而加速推理速度。
ONNX模型可以通过使用多个GPU卡进行加速,这可以通过使用ONNX Runtime来实现。ONNX Runtime是一个高性能推理引擎,它可以在多个GPU卡上并行执行模型推理。
使用ONNX Runtime进行多卡推理的步骤如下:
安装ONNX Runtime
可以从ONNX Runtime的官方网站下载适用于您的操作系统的二进制文件,或者使用pip命令安装。
加载ONNX模型
您可以使用ONNX Runtime的Python API加载ONNX模型。在加载模型时,可以指定使用哪个设备进行推理。
创建多个执行器
对于每个GPU卡,您需要创建一个执行器。您可以使用ONNX Runtime提供的ExecutionProvider来指定使用哪个设备进行推理。
并行执行推理
您可以使用Python的多线程或多进程功能来并行执行推理。每个线程或进程可以使用一个执行器来执行推理。
需要注意的是,使用多卡推理可能会导致模型的内存使用量增加,因此您需要确保您的系统具有足够的内存来存储模型和数据。