数学
天青如水
这个作者很懒,什么都没留下…
展开
-
凸优化
仿射集与仿射集相关联的子空间与v0的选取无关,为什么?这句话的几何意义是什么?2个不同的点构成的点集,其仿射包是什么?3个不共线的点构成的点集,其仿射包是什么?…两个集合{线性空间(及线性子空间)}与{仿射集},哪个集合更大?例2.1证明了线性方程组的解集是仿射集,反之,任意仿射集都可以表示为一个线性方程组的解集,请给出严格的证明。从几何上看,子空间是一定包含零点的一个集合,V0只...原创 2020-02-13 12:06:24 · 2086 阅读 · 0 评论 -
第四课-A=LU
1 概述上一课讲解了乘法和逆矩阵,这一课首先完善之前讲的逆矩阵,然后通过消元矩阵引入AAA的LULULU分解。即:将矩阵AAA分解为矩阵LLL与上三角矩阵UUU。2 逆矩阵的性质补充因为后面涉及到矩阵的转置问题,在这里先提前介绍下转置矩阵。转置矩阵就是把原矩阵中的各行转换成对应的各列。例如:A=[123456789]AT(T代表对A矩阵的转置)=[147258369]A = \begin...原创 2019-11-18 12:45:12 · 911 阅读 · 1 评论 -
第三课-矩阵乘法和可逆矩阵
1 概述上一课讲解了矩阵与向量之间的乘法,这一课主要讲矩阵与矩阵的乘法,并对逆矩阵进行详细介绍。2 矩阵乘法在矩阵乘法中,需要注意AAA的列数必须等于BBB的行数。[123456789]⏟Am∗n[987654321]⏟Bn∗p=[c11c12c13c21c2254c31c32c33]⏟Cm∗p\underbrace{\begin{bmatrix}1&2&3\\4&...原创 2019-11-15 21:32:04 · 1926 阅读 · 0 评论 -
第二课-矩阵消元
1 概述本节主要是对消元法的讲解。首先主要介绍了消元法的具体步骤和使用消元法对矩阵A的要求,然后介绍了如何使用矩阵乘法来表示消元操作。2 消元法求解方程2.1 消元法介绍我们首先通过一个例子来求解Ax=bAx=bAx=b,这里AAA需要是可逆矩阵,即非奇异矩阵{x+2y+z=23x+8y+z=124y+z=2(1)\tag{1}\left \{ \begin{aligned}...原创 2019-11-15 18:19:52 · 1534 阅读 · 0 评论 -
MIT线性代数笔记---前言
前言做笔记一方面是为了对学习过的知识进行回顾,另一方面是为了熟练掌握Markdown和Latex。课程地址:MTI线性代数线性代数的作用:用于求解线性问题,(即求解线性方程中的未知数)。如:化学方程式中的系数,杠杆平衡。对图像进行处理。如:可以使用矩阵卷积操作对图像进行模糊化。文档相似性可以把两个文档向量化,然后算余弦相似度。对有向图无向图操作。我们平常用的高德地图就是由很多个...原创 2019-11-05 00:17:43 · 458 阅读 · 0 评论 -
MIT线性代数笔记(一)---方程组的几何解释
前言做笔记一方面是为了对学习过的知识进行回顾,另一方面是为了熟练掌握Markdown和Latex。线性代数的作用:用于求解线性问题,(即求解线性方程中的未知数)。如:化学方程式中的系数,杠杆平衡。对图像进行处理。如:可以使用矩阵卷积操作对图像进行模糊化。文档相似性可以把两个文档向量化,然后算余弦相似度。对有向图无向图操作。我们平常用的高德地图就是由很多个点组成的无向图。然后可以通...原创 2019-10-10 21:07:37 · 452 阅读 · 0 评论