第三课-矩阵乘法和可逆矩阵

1 概述

上一课讲解了矩阵与向量之间的乘法,这一课主要讲矩阵与矩阵的乘法,并对逆矩阵进行详细介绍。

2 矩阵乘法

在矩阵乘法中,需要注意 A A A的列数必须等于 B B B的行数
[ 1 2 3 4 5 6 7 8 9 ] ⏟ A m ∗ n [ 9 8 7 6 5 4 3 2 1 ] ⏟ B n ∗ p = [ c 11 c 12 c 13 c 21 c 22 54 c 31 c 32 c 33 ] ⏟ C m ∗ p \underbrace{\begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}}_{A_{m*n}} \underbrace{\begin{bmatrix}9&8&7\\6&5&4\\3&2&1\end{bmatrix}}_{B_{n*p}}= \underbrace {\begin{bmatrix}c_{11} & c_{12} & c_{13} \\c_{21} & c_{22} & 54 \\c_{31} & c_{32} & c_{33}\end{bmatrix}}_{C_{m*p}} Amn 147258369Bnp 963852741=Cmp c11c21c31c12c22c32c1354c33

方法一 行列点乘法

C i j = ∑ k = 1 n A i k B j k \begin{aligned}C_{ij} =\sum_{k=1}^{n}A_{ik}B_{jk}\end{aligned} Cij=k=1nAikBjk C C C中第 i i i j j j列的元素等于 A A A中第 i i i行与 B B B中第 j j j列的点乘。
C 23 = A r o w 2 B c o l 3 = A 21 B 13 + A 22 B 23 + A 23 B 33 = 4 ∗ 7 + 5 ∗ 4 + 6 ∗ 1 = 28 + 20 + 6 = 54 = ∑ k = 1 n A 2 k B k 3 \begin{aligned} C_{23} &= A_{row_{2}}B_{col_{3}} = A_{21}B_{13} + A_{22}B_{23} + A_{23}B_{33}\\&=4*7 + 5*4 + 6*1 = 28 + 20 + 6 = 54 =\sum_{k=1}^{n}A_{2k}B_{k3}\end{aligned} C23=Arow2Bcol3=A21B13+A22B23+A23B33=47+54+61=28+20+6=54=k=1nA2kBk3

方法二 列方法

整列考虑, C C C中的各列是 A A A中各列的线性组合。 B B B的一个列向量乘以 A A A(矩阵 A A A各列向量的线性组合)得到 C C C的对应列向量,此过程其余列向量暂不参与计算。
C c o l 1 = A B c o l 1 = B 11 A c o l 1 + B 12 A c o l 2 + B 13 A c o l 3 = [ 1 2 3 4 5 6 7 8 9 ] [ 9 6 3 ] = 9 [ 1 4 7 ] + 6 [ 2 5 8 ] + 3 [ 3 6 9 ] = [ 9 36 63 ] + [ 12 30 48 ] + [ 9 18 27 ] = [ 30 84 138 ] \begin{aligned} C_{col1} &= AB_{col1} = B_{11}A_{col1} + B_{12}A_{col2} + B_{13}A_{col3} \\&= \begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix}\begin{bmatrix}9\\6\\3\end{bmatrix} = 9\begin{bmatrix}1\\4\\7\end{bmatrix}+ 6\begin{bmatrix}2\\5\\8\end{bmatrix}+ 3\begin{bmatrix}3\\6\\9\end{bmatrix} = \begin{bmatrix}9\\36\\63\end{bmatrix} + \begin{bmatrix}12\\30\\48\end{bmatrix} + \begin{bmatrix}9\\18\\27\end{bmatrix} \\&= \begin{bmatrix}30\\84\\138\end{bmatrix} \end{aligned} Ccol1=ABcol1=B11Acol1+B12Acol2+B13Acol3=147258369963=9147+6258+3369=93663+123048+91827=3084138

方法三 行方法

整行考虑, C C C中的各行是 B B B中各行的线性组合。 A A A的一个行向量乘以 B B B(矩阵 B B B各行向量的线性组合)得到 C C C的对应行向量,此过程其余行向量暂不参与计算。
C r o w 1 = A r o w 1 B = A 11 B r o w 1 + A 12 B r o w 2 + A 13 B r o w 3 = [ 1 2 3 ] [ 9 8 7 6 5 4 3 2 1 ] = 1 [ 9 8 7 ] + 2 [ 6 5 4 ] + 3 [ 3 2 1 ] = [ 9 8 7 ] + [ 12 10 8 ] + [ 9 6 3 ] = [ 30 24 18 ] \begin{aligned} C_{row1} &= A_{row1}B = A_{11}B_{row1} + A_{12}B_{row2} + A_{13}B_{row3} \\&= \begin{bmatrix}1&2&3 \end{bmatrix} \begin{bmatrix}9&8&7\\6&5&4\\3&2&1\end{bmatrix} = 1\begin{bmatrix}9&8&7\end{bmatrix} + 2\begin{bmatrix}6&5&4\end{bmatrix} + 3\begin{bmatrix}3&2&1\end{bmatrix} \\&= \begin{bmatrix}9&8&7\end{bmatrix} + \begin{bmatrix}12&10&8\end{bmatrix} + \begin{bmatrix}9&6&3\end{bmatrix} \\&= \begin{bmatrix}30&24&18\end{bmatrix} \end{aligned} Crow1=Arow1B=A11Brow1+A12Brow2+A13Brow3=[123]963852741=1[987]+2[654]+3[321]=[987]+[12108]+[963]=[302418]

方法四 列*行

A A A各列与 B B B各行乘积之和,例如 A A A中第一列乘以 B B B中第一行会得到一个矩阵,最后将各矩阵相加。
C = A c o l 1 B r o w 1 + A c o l 2 B r o w 2 + A c o l 3 B r o w 3 = [ 1 2 3 4 5 6 7 8 9 ] [ 9 8 7 6 5 4 3 2 1 ] = [ 1 4 7 ] [ 9 8 7 ] + [ 2 5 8 ] [ 6 5 4 ] + [ 3 6 9 ] [ 3 2 1 ] = [ 9 8 7 36 32 28 63 56 49 ] + [ 12 10 8 30 25 20 48 40 32 ] + [ 9 6 3 18 16 6 27 18 9 ] = [ 30 24 18 84 73 54 138 114 90 ] \begin{aligned} C &=A_{col1}B_{row1}+A_{col2}B{row2}+A_{col3}B_{row3} \\&= \begin{bmatrix}1&2&3\\4&5&6\\7&8&9\end{bmatrix} \begin{bmatrix}9&8&7\\6&5&4\\3&2&1\end{bmatrix}= \begin{bmatrix}1\\4\\7\end{bmatrix} \begin{bmatrix}9&8&7\end{bmatrix} + \begin{bmatrix}2\\5\\8\end{bmatrix} \begin{bmatrix}6&5&4\end{bmatrix} + \begin{bmatrix}3\\6\\9\end{bmatrix} \begin{bmatrix}3&2&1\end{bmatrix} \\&= \begin{bmatrix}9&8&7\\36&32&28\\63&56&49\end{bmatrix} + \begin{bmatrix}12&10&8\\30&25&20\\48&40&32\end{bmatrix} + \begin{bmatrix}9&6&3\\18&16&6\\27&18&9\end{bmatrix} \\&= \begin{bmatrix}30&24&18\\84&73&54\\138&114&90\end{bmatrix} \end{aligned} C=Acol1Brow1+Acol2Brow2+Acol3Brow3=147258369963852741=147[987]+258[654]+369[321]=936638325672849+12304810254082032+9182761618369=30841382473114185490

方法五:分块乘法

将矩阵 A A A B B B分成能够相互匹配的块,然后对应块进行行列点乘法。
[ A 1 A 2 A 3 A 4 ] [ B 1 B 2 B 3 B 4 ] = [ C 1 C 2 C 3 C 4 ] C 1 = A 1 B 1 + A 2 B 3 \left[\begin{array}{c|c} A_{1} & A_{2} \\ \hline A_{3} & A_{4} \end{array}\right] \left[\begin{array}{c|c} B_{1} & B_{2} \\ \hline B_{3} & B_{4} \end{array}\right] = \left[\begin{array}{c|c} C_{1} & C_{2} \\ \hline C_{3} & C_{4} \end{array}\right] C1=A_{1}B_{1}+A_{2}B_{3} [A1A3A2A4][B1B3B2B4]=[C1C3C2C4]C1=A1B1+A2B3

3 逆矩阵

对于一个方阵 A A A,如果 A A A可逆,就有一个 A − 1 A^{-1} A1,使
A − 1 A = I = A A − 1 (1) \begin{aligned}\tag{1} A^{-1} A = I = A A^{-1} \end{aligned} A1A=I=AA1(1)
公式(1)中 I I I为单位矩阵,既左逆矩阵等于右逆矩阵
如果 A A A非方阵: A − 1 A ⏟ 左 逆 ≠ A A − 1 ⏟ 右 逆 \underbrace{A^{-1}A}_{左逆}\ne\underbrace{AA^{-1}}_{右逆} A1A= AA1。因为这时左右侧 A − 1 A^{-1} A1的形状一定不相同。

3.1 奇异矩阵:(没有逆的情况)

[ 1 3 2 6 ] ⏟ A X = I \underbrace{\begin{bmatrix}1&3\\2&6\end{bmatrix}}_A X = I A [1236]X=I
矩阵 A A A是否存在逆矩阵?从列组合的方面来考虑:矩阵 I I I的列向量是矩阵 A A A列向量的线性组合,即 a [ 1 2 ] + b [ 3 6 ] = c [ 1 2 ] a\begin{bmatrix}1\\2\end{bmatrix}+b\begin{bmatrix}3\\6\end{bmatrix}=c\begin{bmatrix}1\\2\end{bmatrix} a[12]+b[36]=c[12],很明显结果并不为 I I I的某一列,因为单位矩阵中一列只有一个元素为1,其余元素均为0。
如果存在非零向量 X X X,使得 A X = 0 AX=0 AX=0 A A A没有逆矩阵。假如 A A A有逆,由 A − 1 A x = I x = 0 A^{-1}Ax=Ix=0 A1Ax=Ix=0,可知矛盾。

3.2 非奇异矩阵

[ 1 3 2 7 ] ⏟ A [ a c b d ] ⏟ A − 1 = [ 1 0 0 1 ] ⏟ I \underbrace{\begin{bmatrix}1&3\\2&7\end{bmatrix}}_A \underbrace{\begin{bmatrix}a&c\\b&d\end{bmatrix}}_{A^{-1}} = \underbrace{\begin{bmatrix}1&0\\0&1\end{bmatrix}}_I A [1237]A1 [abcd]=I [1001]
$ AA^{-1}{colj} = I{colj} ​ , , A​ 乘 以 其 逆 的 第 乘以其逆的第 j​ 列 等 于 单 位 阵 的 第 列等于单位阵的第 j​$列
[ 1 3 2 7 ] [ a b ] = [ 1 0 ] [ 1 3 2 7 ] [ c d ] = [ 0 1 ] \begin{bmatrix}1&3\\2&7\end{bmatrix} \begin{bmatrix}a\\b\end{bmatrix} = \begin{bmatrix}1\\0\end{bmatrix} \qquad \begin{bmatrix}1&3\\2&7\end{bmatrix} \begin{bmatrix}c\\d\end{bmatrix} = \begin{bmatrix}0\\1\end{bmatrix} [1237][ab]=[10][1237][cd]=[01]

3.3 高斯-若尔当

如何求解一个方阵的逆?一般的方法,就是假设出 A − 1 A^{-1} A1中的元素,然后就是求解一个线性方程组的过程。更好的方式是将两个矩阵放在一起考虑 ( A , I ) (A,I) (A,I),同时对两个矩阵进行变换求逆矩阵。
[ 1 3 1 0 2 7 0 1 ] E 21 → [ 1 3 1 0 0 1 − 2 1 ] E 12 → [ 1 0 7 − 3 0 1 − 2 1 ] \begin{aligned} \left[\begin{array}{cc|cc} 1&3&1&0\\2&7&0&1\end{array}\right]\underrightarrow{E_{21}} \left[\begin{array}{cc|cc} 1&3&1&0\\0&1&-2&1\end{array}\right]\underrightarrow{E_{12}} \left[\begin{array}{cc|cc} 1&0&7&-3\\0&1&-2&1\end{array}\right] \end{aligned} [12371001] E21[10311201] E12[10017231]
用消元的思想表示上面的过程:
E ( A , I ) = ( E A , E I ) = ( I , A − 1 ) E(A,I) = (EA,EI) = (I,A^{-1}) E(A,I)=(EA,EI)=(I,A1)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值