MIT线性代数笔记(一)---方程组的几何解释

1 概述

本节主要介绍线性代数的基础。首先从解方程开始,学习线性代数的应用之一就是求解复杂的方程问题,本节核心之一就是从row picture (行图像) column picture (列图像)的角度解方程。

2 方程组的几何解释基础

2.1 二维行图像

我们首先通过一个例子了解二维方程组:
{ 2 x − y = 0 − x + 2 y = 3 (1) \tag{1} \left \{ \begin{aligned} 2x-y&=0\\ -x+2y&=3 \end{aligned} \right. {2xyx+2y=0=3(1)
我们首先按行将方程组写成矩阵形式:
[ 2 − 1 − 1 2 ] [ x y ] = [ 0 3 ] 矩阵系数 未知向量 向量 \begin{array}{cccc} \begin{bmatrix} 2&-1 \\ -1&2 \end{bmatrix} & \begin{bmatrix} x&y \end{bmatrix} & {}={} & \begin{bmatrix} 0&3 \end{bmatrix}\\ \text{\tiny矩阵系数}& \text{\tiny未知向量} && \text{\tiny向量} \end{array} [2112]矩阵系数[xy]未知向量=[03]向量

系数矩阵(A): 将方程组系数按行提取出来,构造完成的一个矩阵。
未知向量(x): 将方程组的未知数提取出来,按列构成一个向量。
向量(b): 将等号右侧结果按列提取,构成一个向量。

我们将对应的行图像画出来,在系数矩阵上一次取一行构成方程。和我们在初等数学中学习的作图求解方程的过程无异。
行图像

2.2 二维列图像

从l列图像的角度,我们再次求解上面的方程:
{ 2 x − y = 0 − x + 2 y = 3 (1) \tag{1} \left \{ \begin{aligned} 2x-y&=0\\ -x+2y&=3 \end{aligned} \right. {2xyx+2y=0=3(1)
我们将方程按列提取,得到的矩阵为:
x [ 2 − 1 ] + y [ − 1 2 ] = [ 0 3 ] x\begin{bmatrix}2\\ -1\end{bmatrix}+y\begin{bmatrix}-1\\ 2\end{bmatrix}=\begin{bmatrix}0\\ 3\end{bmatrix} x[21]+y[12]=[03]

我们使用列向量构成系数矩阵,将问题转化为: 将向量 [ 2 − 1 ] \begin{bmatrix}2\\-1\end{bmatrix} [21]与向量 [ − 1 2 ] \begin{bmatrix}-1\\ 2\end{bmatrix} [12]任意组合,使其结果构成 [ 0 3 ] \begin{bmatrix}0\\ 3\end{bmatrix} [03]
同样,我们画出列图像:
列图像
很明显能够看出来,x=1,y=2能够满足条件,使的向量组合成 [ 0 3 ] \begin{bmatrix}0\\ 3\end{bmatrix} [03]。如果对x和y取任意数,能够得到任意方向的向量,铺满整个平面。

3 方程组的几何解释推广

3.1 高维行图像

我们将方程组的维数进行推广,从三维开始 { 2 x − y = 0 − x + 2 y − z = − 1 − 3 y + 4 z = 4 \left\{\begin{aligned} 2x-y&=0\\ -x+2y-z&=-1\\ -3y+4z&=4 \end{aligned}\right. 2xyx+2yz3y+4z=0=1=4 如果我们继续使用行图像来解决求解方程组,那么会得到一个很复杂的图像。
矩阵 Ax=b 如下:
A = [ 2 − 1 0 − 1 2 − 1 0 − 3 4 ] , b = [ 0 − 1 4 ] A=\begin{bmatrix}2&-1&0\\-1&2&-1\\0&-3&4\end{bmatrix}, b=\begin{bmatrix}0\\-1\\4\end{bmatrix} A=210123014,b=014
高纬行
从矩阵可以看出,行图像是三个平面相交于一点,我们如果直接想看出这个点的性质可谓是难上加难。
比较靠谱的思路是先联立其中两个平面,使其相交于一条直线,再研究这条直线与平面相交于哪个点,最后得到点坐标即为方程的解。
这个求解过程对于三维来说或许还算合理,那四维呢?五维甚至更高维数呢?直观上很难直接绘制更高维数的图像,这种行图像受到的限制也越来越多。

3.2 高维列向量

同样使用上面的例子,从列图像的思路进行计算。
x [ 2 − 1 0 ] + y [ − 1 2 3 ] + z [ 0 − 1 4 ] = [ 0 − 1 4 ] x\begin{bmatrix}2\\-1\\0\end{bmatrix}+y\begin{bmatrix}-1\\2\\3\end{bmatrix}+z\begin{bmatrix}0\\-1\\4\end{bmatrix}=\begin{bmatrix}0\\ -1\\4\end{bmatrix} x210+y123+z014=014
左侧是线性组合,右侧是合适的线性组合组成的结果,这样一来思路就清晰多了,“寻找线性组合”成为了解题关键。
高维列
很明显这道题是一个特例,我们只需要取 x = 0, y = 0, z = 1 就得到了结果,这在行图像之中并不明显。

当然,之所以我们更推荐使用列图像求解方程, 是因为这是一种更系统的求解方法,即寻找线性组合,而不用绘制每个行方程的图像之后寻找那个很难看出来的点。

另外一个优势在于,如果我们改变最后的结果 b,例如本题中,我们将其改为
x [ 2 − 1 0 ] + y [ − 1 2 3 ] + z [ 0 − 1 4 ] = [ 1 1 − 3 ] x\begin{bmatrix}2\\-1\\0\end{bmatrix}+y\begin{bmatrix}-1\\2\\3\end{bmatrix}+z\begin{bmatrix}0\\-1\\4\end{bmatrix}=\begin{bmatrix}1\\ 1\\-3\end{bmatrix} x210+y123+z014=113
那么,y,z重新取值,寻找一个新的线性组合就可以了。但是如果我们使用的是行图像呢?那意味着我 们要完全重画三个平面图像,就简便性来讲,两种方法高下立判。
另外,还要注意的一点是对任意的 b 是不是都能求解 Ax = b 这个矩阵方程呢? 也就是对 3*3 的系数矩阵 A,其列的线性组合是不是都可以覆盖整个三维空间呢?

对于我们举的这个例子来说,一定可以,还有我们上面 2*2 的那个例子,也可以覆盖整个平面,但是有一些矩阵就是不行的。

比如 [ 1 1 1 ] [ 0 1 2 ] [ 1 2 3 ] \begin{bmatrix}1\\1\\1\end{bmatrix}\begin{bmatrix}0\\1\\2\end{bmatrix}\begin{bmatrix}1\\2\\3\end{bmatrix} 111012123三个列向量本身就构成了一个平面,那么这样的三个向量组合成的向量只能活动在这个平面上,肯定无法覆盖整个三维空间,也就无法实现对任意的b,都能求解AX=b这个方程

3.3 矩阵乘法

如何对矩阵A和向量x的积进行求解。例如A= [ 2 5 1 3 ] \begin{bmatrix}2&5\\1&3\end{bmatrix} [2153],x= [ 1 2 ] \begin{bmatrix}1\\2\end{bmatrix} [12]

  • 方法1:将矩阵A看做列向量的组合:
    [ 2 5 1 3 ] [ 1 2 ] = 1 [ 2 1 ] + 2 [ 5 3 ] = [ 12 7 ] \begin{bmatrix}2&5\\1&3\end{bmatrix} \begin{bmatrix}1\\2\end{bmatrix} {}={} 1\begin{bmatrix}2\\1\end{bmatrix}{}+{} 2\begin{bmatrix}5\\3\end{bmatrix}{}={} \begin{bmatrix}12\\7\end{bmatrix} [2153][12]=1[21]+2[53]=[127]
    将x每个分量与矩阵中各个列向量相乘,再将其求和。
  • 方法2:将矩阵A看做行向量的组合:
    [ 2 5 1 3 ] [ 1 2 ] = [ ( 2 , 5 ) ∗ ( 1 , 2 ) ( 1 , 3 ) ∗ ( 1 , 2 ) ] = [ 12 7 ] \begin{bmatrix}2&5\\1&3\end{bmatrix} \begin{bmatrix}1\\2\end{bmatrix}{}={} \begin{bmatrix}(2,5)*(1,2)\\(1,3)*(1,2)\end{bmatrix}{}={} \begin{bmatrix}12\\7\end{bmatrix} [2153][12]=[(2,5)(1,2)(1,3)(1,2)]=[127]
    将矩阵A的每行分别与x进行向量乘法

4 小结

这部分内容主要是线性代数概念的初步了解,从解方程谈起,从行空间逐步过渡到列空间,可以发现从列空间角度将求解方程变化为求列向量的线性组合,这种方法更加科学。末尾稍微介绍了一下矩阵乘法,这部分的内容理解就好。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值