凸优化

仿射集

  1. 与仿射集相关联的子空间与v0的选取无关,为什么?这句话的几何意义是什么?
  2. 2个不同的点构成的点集,其仿射包是什么?3个不共线的点构成的点集,其仿射包是什么?…
  3. 两个集合{线性空间(及线性子空间)}与{仿射集},哪个集合更大?
  4. 例2.1证明了线性方程组的解集是仿射集,反之,任意仿射集都可以表示为一个线性方程组的解集,请给出严格的证明。
  • 从几何上看,子空间是一定包含零点的一个集合,V0只是确定了子空间与仿射集的距离,v0只要是C中的就可以了,并不影响子空间的确定。
  • 直线,二维平面
  • 仿射集大,{线性空间}包含于{仿射集},线性空间一定是仿射集,反之不一定。并且线性空间一定经过原点,仿射集不一定。
  • 设C是非零仿射集,V是C对应的子空间, T = V +   e 1 , e 2 , ⋯   , e m T=V^+\ e_1,e_2,\cdots,e_m T=V+ e1,e2,,em,为T的基向量。
    任意y属于V,都有 e 1 T y = 0 , e 2 T y = 0 ⋯ e m T y = 0 {e_1}^Ty=0,{e_2}^Ty=0\cdots{e_m}^Ty=0 e1Ty=0,e2Ty=0emTy=0,设 A = [ e 1 , e 2 , ⋯   , e m ] T A=[e_1,e_2,\cdots,e_m]^T A=[e1,e2,,em]T,A是 m × n m\times n m×n矩阵。所以Ay=0。
    又因为V=C-a,所以任意x属于C,x=y+a
    A x = A y + A a = A a = b Ax=Ay+Aa=Aa=b Ax=Ay+Aa=Aa=b,证明成立
    当C是空集时,不存在x,使得Ax=b,满足题意。

凸集

  1. 想想凸集的本质是什么,与仿射集有什么不同?
  2. 书上的习题2.1、2.4建议做一下
    在这里插入图片描述在这里插入图片描述
  • 2.4表明,任给一个集合,能够包住它的凸集有无数个,但是其中最小的是它的凸包,而这个凸包,正好是所有包住这个集合的凸集的公共部分

总结一下:不考虑空集、单点集这些意义不大的玩意。
1、仿射集是那些平直的,没有方向限制可无限延伸的东西,例如直线、平面、…、高维超平面。它们的本质特征就是在其中取两个不同的点画直线,跑不出去
2、凸集就是向外鼓起的东西,例如球、长方体、…、高维空间中的超球,其本质特征是在其中任取两个点连线段,跑不出去
3、锥是从原点出发向一个方向平直无限延伸的东西,例如顶点在原点的圆锥。其本质特征是从原点出发过其中任意一点连射线,跑不出去。从原点出发的两条不同的射线是锥,两个共原点的不同的圆锥也是锥
4、仿射集一定是凸集
5、凸锥就是凸的锥,也就是说既是锥也是凸集。从原点出发的两条不同的射线是锥,但不是凸锥

一个目标函数定义在某个集合(可行解集合)上,优化问题就是从这个集合中找出使目标函数最优(例如达到最小值)的那个解。一般而言,优化问题并不容易求解,但是如果目标函数是凸函数,可行解集合是凸集,那么就有解决问题的方法,这就是凸优化要研究的内容

超平面

思考几个问题:

  1. 超平面的“维数”是多少?超平面方程中b有什么含义?
  2. 单纯性一定是多面体,试着给出严格的证明。
  3. 看一下附录a中的范数概念,然后思考在二维和三维空间中,1范数球、2范数球、∞ 范数球的形状;1范数锥、2范数锥、∞ 范数锥的形状。
  • 关于超平面的“维数”:在R^n中,超平面a’x=b是仿射集(所以也是凸集),它的维数就是与之相关的子空间的维数,所以维数是n-1。这个子空间的正交补是1维的,超平面的法向量a就是正交补空间的一个基

  • 维数是线性空间中极大线性无关组的向量个数,或者说是基向量的个数。超平面,一般不是线性空间,所以严格来说没有基,也就没有维数。但是超平面是仿射集,所以它有对应的线性子空间,这个线性子空间的维数就定义为超平面的维数。而这个线性子空间正是其法向量张成的一维空间的正交补空间,所以它的维数是n-1

  • 超平面方程中b的意义:超平面方程是a’x=b,x是超平面上的任意一点,所以常数b是超平面上任何一点与法向量a的内积

  • 那么,原点到超平面的距离是多少呢?就是x在a上的投影长度,所以是|b|/||a||

  • 范数球二维空间
    在这里插入图片描述- 范数球三维空间
    在这里插入图片描述

  • 范数锥二维空间
    在这里插入图片描述

  • 范数锥三维空间
    在这里插入图片描述三维情况下,2范数锥的方程是sqrt(x2+y2)=z
    1范数锥的方程是|x|+|y|=z,∞范数锥的方程是max(|x|+|y|)=z。
    注意观察范数锥在三维空间中的形状,从上到下的投影与范数球在二维空间中的形状一致。锥只是比球多了一个变量,随着Z的增大,就得到了三维图形。

保凸运算

运算可以分成两类,一是集合运算、交并补等等,一是集合之间的映射。
集合运算中,交保、并不保、和保。思考问题:
1、笛卡尔积是否保凸? 保凸,按照凸集定义即可证明
2、补是否保凸?不保,集合{ y ∗ > y ∣ y = x 2 , x ∈ R {y*>y|y=x^2,x\in R} y>yy=x2,xR}的补集非凸

集合间的保凸映射,指的是凸集经过映射得到的集合仍然是凸集。典型的保凸映射有仿射、透视、线性分式。思考一下,保凸映射有没有可能把非凸集映射成凸集?
保凸映射的本质是,输入是凸的,输出一定也是凸的。至于输入非凸,那么输出是凸还是非凸并不关心。

平面上两个圆的合集还是圆,由 ∣ ∣ x − a ∣ ∣ < = d 1 , ∣ ∣ y − b ∣ ∣ < = d 2 ||x-a||<=d_1,||y-b||<=d_2 xa<=d1,yb<=d2的, d 1 + d 2 > = ∣ ∣ x − a ∣ ∣ + ∣ ∣ y − b ∣ ∣ > = ∣ ∣ x + y − a − b ∣ ∣ d_1+d_2>=||x-a||+||y-b||>=||x+y-a-b|| d1+d2>=xa+yb>=x+yab

正常锥和广义不等式

在这里插入图片描述
在这里插入图片描述广义不等式是一种偏序关系,需要满足自反性(xRy)、传递性(能由xRy,yRz推出xRz)、反对称性(xRy和yRz只有一个)。R是一种关系。严格偏序关系没有自反性。

我们都知道2维及以上的向量是不能比较大小的,但是比大小这件事在很多时候是很有用的,因此我们借助于真锥,可以在高维空间中引入“大小”关系。但是,由真锥引入的只是偏序关系,所以不是每两个向量都可以比大小。如果有一个向量可以和所有向量比大小,并且是最小的,那就是最小元。如果一个向量在所有能够与它比大小的向量中是最小的,则称为极小元

在2维及以上空间中引入偏序的最常规的方法是用非负象限锥,它是一维空间中的[0,+∞)、二维空间中的第一象限、三维空间中的第一卦限的自然推广。非负象限锥引入的大小关系就是分量不等式,说x<=y,就是指x的每个分量小于等于y的对应分量

1、锥必须包括原点,所以真锥也包括原点
2、元素大小的比较可以自定义,只要引入一个真锥即可

问题1:
K=[0,+∞)是一维真锥,它确定了实数集的<=关系,这个二元关系不仅是偏序关系,而且还是全序关系,所以全体实数都可以比较大小

问题3:
y − x ∈ K y-x\in K yxK,y-x表示向量之差在锥里,因为锥是射线,y-x属于K,x-y就不属于K了,就满足了反对称,传递很好理解,锥包含零点,所以满足自反要求。

问题4:
严格偏序是用intK定义的,intK表示K的内部,就是K的内点的集合,intK不是锥。所以,严格偏序并不是偏序关系

问题6:
三角形左下顶点是最小元,也是极小元;圆没有最小元,极小元是第三象限的圆周。此处的大小关系是通过非负象限锥定义的,二维情况的非负象限锥就是第一象限。

第6题换成最大元和极大元,三角形没有最大元,极大元是右上角的边。圆也没有最大元,极大元是右上角。

举个不能比较大小的案例,比如用非负象限定义的偏序关系,(-2,4)<=(-1,5),但是(-2,4)和(1,3)就不能比大小。
因为(-1,5)-(-2,4)=(1,1),在第一象限,所以可以比大小,其实就是对应的分量都满足小于等于关系,(1,3)-(-2,4)=(3,-1),不在第一象限,所以不能比大小,对应的分量不是都满足小于等于关系

由非负象限锥定义的大小关系就是分量的大小关系。对二维情况来说,x分量小,则在左边,y分量小,则在下边,所以说一个向量比另一个向量“小”,就是说这个向量在另一个向量的左下。因此,最小元就是一个集合最左下的点,极小元就是左下没有其它点的点

用第一象限定义向量的大小关系,是两个向量的差落在第一象限。因此一个点比它左下的点大,比它右上的点小。一个点不能和它右下的点以及左上的点比大小。这也说明二维及其以上的向量的“大小”只是偏序关系,不是全序关系,不是任何两个点都可以比大小

只要是真锥都可以定义偏序关系,但是定义出来的不一定有实际意义。用非正象限也可以定义分量不等式,只需把y-x属于K换成x-y就可以了

不是所有的凸锥都是真锥,比如{0}、全空间、半空间都是凸锥,但不是真锥

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值